[1] 李敏. 化肥使用量零增长专题报道之一:耕地之“恙”[J]. 中国石油和化工经济分析, 2015(6):12-13. [2] 黄国勤, 王兴祥, 钱海燕, 等. 施用化肥对农业生态环境的负面影响及对策[J]. 生态环境, 2004(4):656-660. [3] 刘志雄, 邱正明, 闵勇, 等. 设施蔬菜“三减三增”健康栽培技术[J]. 长江蔬菜, 2015(24):77-78. [4] 陈绍荣. 科学发展生物刺激剂产业, 建设现代生态文明农业[J]. 磷肥与复肥, 2019, 34(8):1-6. [5] Buono S, Langellotti AL, Martello A, et al.Functional ingredients from microalgae[J]. Food Funct, 2014, 5(8):1669-1685. [6] Eppink MHM, Olivieri G, Reith H, et al.From current algae products to future biorefinery practices:a review[J]. Adv Biochem Eng Biotechnol, 2019, 166:99-123. [7] 赵伟, 高保燕, 黄罗冬, 等. 微藻及其生物活性成分在水产养殖中的营养价值、生理功能和抗病活性[J]. 饲料工业, 2019, 40(8):9-16. [8] 胡光荣, 范勇, 李福利. 微藻中的高附加值天然产物与挖掘策略[J]. 氨基酸和生物资源, 2015, 37(4):1-6. [9] Mukherjee C, Chowdhury R, Sutradhar T, et al.Parboiled rice effluent:A wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization[J]. Algal Research, 2016, 19:225-236. [10] Wang JH, Zhang TY, Dao GH, et al.Microalgae-based advanced municipal wastewater treatment for reuse in water bodies[J]. Appl Microbioln Biotechnol, 2017, 101(7):2659-2675. [11] Huang G, Chen F, Kuang Y, et al.Current techniques of growing algaen using flue gas from exhaust gas industry:a review[J]. Appl Biochem Biotechnol, 2016, 178(6):1220-38. [12] Jenkins SN, Paredesvaldivia CA, Waite IS, et al.Assessing the suitability of microalgae biomass produced from piggery waste as a fertiliser[J]. Animal Production Science, 2017, 57(12):2480. [13] 熊思健. 生物刺激剂——我国农业高质量发展的新动力[J]. 磷肥与复肥, 2019, 34(4):4. [14] Bryant HL, Gogichaishvili I, Anderson D, et al.The value of post-extracted algae residue[J]. Algal Research, 2012, 1(2):185-193. [15] 杜琼, 孔维宝, 韩锐, 等. 土壤微藻的种类及其功能研究进展[J]. 生物学通报, 2015, 50(1):1-5. [16] Perera I, Subashchandrabose SR, Venkateswarlu K, et al.Consortia of cyanobacteria/microalgae and bacteria in desert soils:an underexplored microbiota[J]. Appl Microbiol Biotechnol, 2018, 102(17):7351-7363. [17] 刘国强, 王洪斌, 郑勇. 盐碱地专用肥研究进展[J]. 新疆师范大学学报:自然科学版, 2017, 36(4):50-54. [18] Takemura K, Endo R, Kitaya Y.Possibility of co-culturing Euglena gracilis and Lactuca sativa L. with biogas digestate[J]. Environ Technol, 2018, 28:1-8. [19] Lu Y, Xu J.Phytohormones in microalgae:a new opportunity for microalgal biotechnology[J]. Trends in Plant Science, 2015, 20(5):273-282. [20] 郑庆伟. 中国科学院提出基于植物激素的微藻生物技术新观点[J]. 农药市场信息, 2015(12):51. [21] Renuka N, Guldhe A, Prasanna R, et al.Microalgae as multi-functional options in modern agriculture:current trends, prospects and challenges[J]. Biotechnol Adv. 2018, 36(4):1255-1273. [22] Mazhar S, Cohen JD, Hasnain S.Auxin producing non-heterocystous Cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat[J]. J Basic Microbiol, 2013, 53(12):996-1003. [23] De PK.The role of blue-green algae in nitrogen fixation in rice-fields[J]. Proceedings of the Royal Society of London, 1939, 127(846):121-139. [24] Bargaoui S.Evaluating the establishment and agronomic proficiency of cyanobacterial consortia as organic options in wheat-rice cropping sequence[J]. Experimental Agriculture, 2013, 49(3):416-434. [25] Žižková E, Kubeš M, Dobrev PI, et al.Control of cytokinin and auxin homeostasis in cyanobacteria and algae[J]. Annals of Botany, 2017, 119(1):151-166. [26] Barminski R, Storteboom H, Davis JG.Development and evaluation of an organically certifiable growth medium for cultivation of cyanobacteria[J]. J Appl Phycol, 2016, 28(5):2623-2630. [27] 姜继辉, 严少华, 陈巍等. 蓝藻沼肥对土壤的影响[J]. 土壤, 2010, 42(4):678-680. [28] Dash NP, Kumar A, Kaushik MS, et al.Cyanobacterial(unicellular and heterocystous)biofertilization to wetland rice influenced by nitrogenous agrochemical[J]. Journal of Applied Phycology, 2016, 28(6):3343-3351. [29] 包江桥, 周伊薇, 何璐茜, 等. 固氮蓝藻的农业应用研究进展[J]. 中国生态农业学报, 2018, 26(4):574-583. [30] 卢仡, 林红华, 柯群. 微藻的生物活性物质及其功能[J]. 食品工业科技, 2011, 32(7):470-473. [31] 夏嵩, 万凌琳, 李爱芬, 等. 微藻生物质产品和生物活性物质的研究与开发[J]. 天然产物研究与开发, 2014, 26(3):463-469, 453. [32] Barclay WR, Lewin RA.Microalgal polysaccharide production for the conditioning of agricultural soils[J]. Plant & Soil, 1985, 88(2):159-169. [33] 陈玮, 刘启顺, 李曙光, 等. 微藻多糖生物活性研究进展[J]. 中国海洋药物, 2012, 31(3):55-60. [34] Jochum M, Moncayo LP, Jo YK.Microalgal cultivation for biofertilization in rice plants using a vertical semi-closed airlift photobioreactor[J]. PLoS One, 2018, 13(9):e0203456. [35] Akoijam C, Singh AK, Rai AN.Characterization of free-living cyanobacterial strains and their competence to colonize rice roots[J]. Biology & Fertility of Soils, 2012, 48(6):679-687. [36] Benemann JR, Olst JCV, Massingill MJ, et al.The controlled eutrophication process:Using microalgae for CO2 utilization and agricultural fertilizer recycling[C]. Greenhouse Gas Control Technologies, Volume II, 2003. [37] Coppens J, Grunert O, Hende SVD, et al.The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels[J]. Journal of Applied Phycology, 2016, 28(4):2367-2377. [38] Dineshkumar R, Subramanian J, Gopalsamy J, et al.The impact of using microalgae as biofertilizer in maize(Zea mays L.)[J]. Waste & Biomass Valorization, 2017(4):1-10. [39] 杨方浩, 侯利园, 苑瑞东, 等. 废水资源化小球藻对拟南芥生长的肥效研究[J]. 安徽农业科学, 2018, 46(9):75-77. [40] 刘淑芳, 吕俊平, 冯佳, 等. 施用微藻对黄瓜生长及土壤质量的影响[J]. 山西农业科学, 2016, 44(9):1312-1315. [41] 代小, 木其叶乐, 敖敦, 等. 藻类活性细胞生物肥对苜蓿草产量及品质的影响[J]. 黑龙江畜牧兽医, 2018(22):164-167. [42] 庄秀园, 黄英明, 张道敬, 等. 小球藻高附加值生物活性物质“小球藻热水提取物”的研究现状与展望[J]. 生物工程学报, 2015, 31(1):24-42. [43] Yin H, Li Y, Zhang HY, et al.Chitosan oligosaccharides-triggered innate immunity contributes to oilseed rape resistance against Sclerotinia sclerotiorum[J]. International Journal of Plant Sciences, 2013, 174(4):722-732. [44] O’Hara LE, Paul MJ, Wingler A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate[J]. Mol Plant, 2013, 6(2):261-274. [45] Winkler AJ, Dominguez-Nuñez JA, Aranaz I, et al. Short-chain chitin oligomers:Promoters of plant growth[J]. Mar Drugs, 2017, 15(2)pii:E40. [46] 申婷, 胡蕾, 冉炜, 等. 微藻在生物质开发中的应用进展[J]. 绿色科技, 2017(22):128-130. [47] Shalaby EA.Algae as promising organisms for environment and health[J]. Plant Signal Behav, 2011, 6(9):1338-1350. [48] Wu Y, Rao B, Wu P, et al.Development of artificially induced biological soil crusts in fields and their effects on top soil[J]. Plant and Soil, 2013, 370(1-2):115-124. [49] Mukherjee C, Chowdhury R, Ray K.Phosphorus recycling from an unexplored source by polyphosphate accumulating microalgae and cyanobacteria—a step to phosphorus security in agriculture[J]. Frontiers in Microbiology, 2015, 6:1421. [50] 余劲聪. 海藻寡糖在农业领域的应用研究进展[J]. 南方农业学报, 2016, 47(6):921-927. [51] 郑娇莉, 李双双, 彭成荣, 等. 干燥对人工生物土壤结皮固氮酶活性恢复过程的影响[J]. 中国科学:生命科学, 2017, 47(7):759-769. [52] Gupta V, Ratha SK, Sood A, et al.New insights into the biodiversity and applications of cyanobacteria(blue-green algae)—Prospects and challenges[J]. Algal Research, 2013, 2(2):79-97. [53] 孔德柱, 张树峰, 周玉生, 等. 固氮鱼腥藻在小麦和西红柿上的肥效[J]. 江苏农业科学, 2016, 44(10):499-502. [54] 刘玉环, 黄磊, 王允圃, 等. 大规模微藻光生物反应器的研究进展[J]. 生物加工过程, 2016, 14(1):65-73. [55] Sun ZL, Sun LQ, Chen GZ.Microalgal cultivation and nutrient removal from digested piggery wastewater in a thin-film flat plate photobioreactor[J]. Appl Biochem Biotechnol, 2019, 187(4):1488-1501. |