生物技术通报 ›› 2020, Vol. 36 ›› Issue (6): 1-12.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0317
• 特约综述 • 下一篇
叶健文, 陈江楠, 张旭, 吴赴清, 陈国强
收稿日期:
2020-03-24
出版日期:
2020-06-26
发布日期:
2020-06-28
作者简介:
叶健文,男,博士,博士后,研究方向:合成生物学、代谢工程;E-mail:yejianwen@phalab.org
基金资助:
YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang
Received:
2020-03-24
Published:
2020-06-26
Online:
2020-06-28
摘要: 动态调控作为代谢工程优化中最有效的策略之一,通常包含输入信号发生器、生物传感器和执行机构3个部分。输入信号可以是细胞代谢物和环境条件变化,如化学分子、核糖核酸、温度、光信号等。而生物传感器是能够响应输入信号变化,并转化成特定信号输出的基因元件,其输出信号可以直接调控基因表达,也可以作为其他感应元件的输入。重点介绍了动态调控的基本原理及分类及其在微生物细胞工厂工程化改造中的应用实例,主要包括动态调控的优势和研究进展、动态调控系统的构建与表征,同时,也着重讨论了动态调控在细胞工厂改造中潜在的机遇与可能面临的挑战。
叶健文, 陈江楠, 张旭, 吴赴清, 陈国强. 动态调控:一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12.
YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories[J]. Biotechnology Bulletin, 2020, 36(6): 1-12.
[1] Martin Vincent JJ, Pitera Douglas J, Withers Sydnor T, et al.Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology, 2003, 21(7):796-802. [2] Peirú S, Menzella Hugo G, Rodríguez E, et al.Production of the potent antibacterial polyketide erythromycin C in Escherichia coli[J]. Applied and Environmental Microbiology, 2005, 71(5):2539-2547. [3] Aldor IS, Keasling JD .Process design for microbial plastic factories:metabolic engineering of polyhydroxyalkanoates[J]. Current Opinion in Biotechnology, 2003, 14(5):475-483. [4] Xia PF, Ling H, Foo JL, et al.Synthetic genetic circuits for programmable biological functionalities[J]. Biotechnology Advances, 2019, 37(6):107393. [5] Nielsen J, Keasling JD.Engineering cellular metabolism[J]. Cell, 2016, 164(6):1185-1197. [6] Lempp M, Farke N, Kuntz M, et al.Systematic identification of metabolites controlling gene expression in E. coli[J]. Nature Communications, 2019, 10(1):1-9. [7] Kent R, Dixon N.Contemporary tools for regulating gene expression in bacteria[J]. Trends in Biotechnology, 2020, 38(3):316-333. [8] Xu P.Production of chemicals using dynamic control of metabolic fluxes[J]. Current Opinion in Biotechnology, 2018, 53:12-19. [9] Chen X, Liu L.Gene circuits for dynamically regulating metabolism[J]. Trends Biotechnol, 2018, 36(8):751-754. [10] Holtz WJ, Keasling JD.Engineering static and dynamic control of synthetic pathways[J]. Cell, 2010, 140(1):19-23. [11] Ye J, Hu D, Che X, et al.Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)from glucose[J]. Metabolic Engineering, 2018, 47:143-152. [12] Ye J, Hu D, Yin J, et al.Stimulus response-based fine-tuning of polyhydroxyalkanoate pathway in Halomonas[J]. Metabolic Engineering, 2020, 57:85-95. [13] Shen R, Yin J, Ye JW, et al.Promoter engineering for enhanced P(3HB-co-4HB)production by Halomonas bluephagenesis[J]. ACS Synthetic Biology, 2018, 7(8):1897-1906. [14] Li T, Ye J, Shen R, et al.Semirational approach for ultrahigh poly(3-hydroxybutyrate)accumulation in Escherichia coli by combining one-step library construction and high-throughput screening[J]. ACS Synth Biol, 2016, 5(11):1308-1317. [15] Dueber JE, Wu GC, Malmirchegini GR, et al.Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nature Biotechnology, 2009, 27(8):753. [16] Baek JM, Mazumdar S, Lee SW, et al.Butyrate production in engineered Escherichia coli with synthetic scaffolds[J]. Biotechnology and Bioengineering, 2013, 110(10):2790-2794. [17] Zhou H, Vonk B, Roubos JA, et al.Algorithmic co-optimization of genetic constructs and growth conditions:application to 6-ACA, a potential nylon-6 precursor[J]. Nucleic Acids Research, 2015, 43(21):10560-10570. [18] Zhao L, Lu Y, Yang J, et al.Expression regulation of multiple key genes to improve l-threonine in Escherichia coli[J]. Microbial Cell Factories, 2020, 19(1):1-23. [19] Alper H, Miyaoku K, Stephanopoulos G.Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets[J]. Nature Biotechnology, 2005, 23(5):612-616. [20] Yim H, Haselbeck R, Niu W, et al.Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol[J]. Nature Chemical Biology, 2011, 7(7):445. [21] Burgard AP, Pharkya P, Maranas CD.Optknock:a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization[J]. Biotechnology and Bioengineering, 2003, 84(6):647-657. [22] Pharkya P, Maranas CD.An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems[J]. Metabolic Engineering, 2006, 8(1):1-13. [23] Ranganathan S, Suthers PF, Maranas CD.OptForce:an optimization procedure for identifying all genetic manipulations leading to targeted overproductions[J]. PLoS Computational Biology, 2010, 6(4):e1000744. [24] Lee SJ, Lee DY, Kim TY, et al.Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation[J]. Applied Environmental Microbiology, 2005, 71(12):7880-7887. [25] Bro C, Regenberg B, Förster J, et al.In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production[J]. Metabolic Engineering, 2006, 8(2):102-111. [26] Becker J, Zelder O, Häfner S, et al.From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production[J]. Metab Eng, 2011, 13(2):159-168. [27] Salis HM, Mirsky EA, Voigt CA.Automated design of synthetic ribosome binding sites to control protein expression[J]. Nature Biotechnology, 2009, 27, 946-950. [28] Rugbjerg P, Sommer MOA.Overcoming genetic heterogeneity in industrial fermentations[J]. Nat Biotechnol, 2019, 37(8):869-876. [29] Schmitz AC, Hartline CJ, Zhang F.Engineering microbial metabolite dynamics and heterogeneity[J]. Biotechnology Journal, 2017, 12(10):1700422. [30] Shen X, Wang J, Li C, et al.Dynamic gene expression engineering as a tool in pathway engineering[J]. Current Opinion in Biotechnology, 2019, 59:122-129. [31] Lalwani MA, Zhao EM, Avalos JL.Current and future modalities of dynamic control in metabolic engineering[J]. Current Opinion in Biotechnology, 2018, 52:56-65. [32] Immethun CM, DeLorenzo DM, Focht CM, et al. Physical, chemical, and metabolic state sensors expand the synthetic biology toolbox for Synechocystis sp. PCC 6803[J]. Biotechnology and Bioengineering, 2017, 114(7):1561-1569. [33] Cress BF, Trantas EA, Ververidis F, et al.Sensitive cells:enabling tools for static and dynamic control of microbial metabolic pathways[J]. Curr Opin Biotechnol, 2015, 36:205-214. [34] Venayak N, Anesiadis N, Cluett WR, et al.Engineering metabolism through dynamic control[J]. Current Opinion in Biotechnology, 2015, 34:142-152. [35] Zhou L, Ren J, Li Z, et al.Characterization and engineering of a Clostridium glycine riboswitch and its use to control a novel metabolic pathway for 5-aminolevulinic acid production in Escherichia coli[J]. ACS Synthetic Biology, 2019, 8(10):2327-2335. [36] Gao C, Xu P, Ye C, et al.Genetic circuit-assisted smart microbial engineering[J]. Trends Microbiol, 2019, 27(12):1011-1024. [37] Brockman IM, Prather KLJ.Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites[J]. Metabolic Engineering, 2015, 28:104-113. [38] Dahl RH, Zhang F, Alonso-Gutierrez J, et al.Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31(11):1039. [39] Yang Y, Lin Y, Wang J, et al.Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis[J]. Nature Communications, 2018, 9(1):3043. [40] Gupta A, Reizman I MB, Reisch CR, et al.Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J]. Nat Biotechnol, 2017, 35(3):273. [41] Zhao EM, Zhang Y, Mehl J, et al.Optogenetic regulation of engineered cellular metabolism for microbial chemical production[J]. Nature, 2018, 555(7698):683-687. [42] Moser F, Borujeni AE, Ghodasara AN, et al.Dynamic control of endogenous metabolism with combinatorial logic circuits[J]. Molecular Systems Biology, 2018, 14(11):e8605. [43] Chen AY, Deng Z, Billings AN, et al.Synthesis and patterning of tunable multiscale materials with engineered cells[J]. Nature Materials, 2014, 13(5):515-523. [44] Wang J, Zhang R, Zhang Y, et al.Developing a pyruvate-driven metabolic scenario for growth-coupled microbial production[J]. Metabolic Engineering, 2019, 55:191-200. [45] Qian S, Cirino PC.Using metabolite-responsive gene regulators to improve microbial biosynthesis[J]. Current Opinion in Chemical Engineering, 2016, 14:93-102. [46] Farmer WR, Liao JC.Improving lycopene production in Escherichia coli by engineering metabolic control[J]. Nature Biotechnology, 2000, 18(5):533-537. [47] Solomon KV, Sanders TM, Prather KLJ.A dynamic metabolite valve for the control of central carbon metabolism[J]. Metabolic Engineering, 2012, 14(6):661-671. [48] Johnson AO, Gonzalez-Villanueva M, Wong L, et al.Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories[J]. Metabolic Engineering, 2017, 44:253-264. [49] DiRusso CC, Heimert TL, Metzger AK. Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A[J]. Journal of Biological Chemistry, 1992, 267(12):8685-8691. [50] Zhang F, Carothers JM, Keasling JD.Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids[J]. Nature Biotechnology, 2012, 30(4):354. [51] Morgan SA, Nadler DC, Yokoo R, et al.Biofuel metabolic engineering with biosensors[J]. Current Opinion in Chemical Biology, 2016, 35:150-158. [52] Mustafi N, Grünberger A, Kohlheyer D, et al. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids[J]. Metabolic Engineering, 2012, 14(4):449-457. [53] Schendzielorz G, Dippong M, Grünberger A, et al. Taking control over control:Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways[J]. ACS Synthetic Biology, 2014, 3(1):21-29. [54] Maury J, Kannan S, Jensen NB, et al.Glucose-dependent promoters for dynamic regulation of metabolic pathways[J]. Frontiers in Bioengineering and Biotechnology, 2018, 6:63. [55] Farmer WR, Liao JC.Acetate-inducible protein overexpression from the glnAp2 promoter of Escherichia coli[J]. Biotechnology and Bioengineering, 2001, 75(5):504-509. [56] Bulter T, Lee SG, Wong WWC, et al.Design of artificial cell-cell communication using gene and metabolic networks[J]. PNAS, 2004, 101(8):2299-2304. [57] Teo WS, Chang MW.Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2014, 111(1):144-151. [58] Dinh CV, Chen X, Prather KLJ.Development of a quorum-sensing based circuit for control of co-culture population composition in a naringenin production system[J]. ACS Synthetic Biology, 2020. [59] Krishnamurthy M, Hennelly SP, Dale T, et al.Tunable riboregulator switches for post-transcriptional control of gene expression[J]. ACS Synthetic Biology, 2015, 4(12):1326-1334. [60] Harder BJ, Bettenbrock K, Klamt S.Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli[J]. Biotechnology and Bioengineering, 2018, 115(1):156-164. [61] Kim EM, Woo HM, Tian T, et al.Autonomous control of metabolic state by a quorum sensing(QS)-mediated regulator for bisabolene production in engineered E. coli[J]. Metabolic Engineering, 2017, 44:325-336. [62] Dinh CV, Prather KLJ.Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli[J]. PNAS, 2019, 116(51):25562-25568. [63] Doong SJ, Gupta A, Prather KLJ.Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli[J]. PNAS, 2018, 115(12):2964-2969. [64] Soma Y, Hanai T.Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production[J]. Metabolic Engineering, 2015, 30:7-15. [65] Zhao EM, Suek N, Wilson MZ, et al.Light-based control of metabolic flux through assembly of synthetic organelles[J]. Nature Chemical Biology, 2019, 15(6):589-597. [66] Brockman IM, Prather KLJ.Dynamic metabolic engineering:new strategies for developing responsive cell factories[J]. Biotechnology Journal, 2015, 10(9):1360-1369. [67] Deng J, Chen C, Gu Y, et al.Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis[J]. Metabolic Engineering, 2019, 55:179-190. [68] Cui S, Lv X, Wu Y, et al.Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis[J]. ACS Synthetic Biology, 2019, 8(8):1826-1837. [69] Wu Y, Chen T, Liu Y, et al.Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis[J]. Nucleic Acids Research, 2020, 48(2):996-1009. [70] Lv Y, Qian S, Du G, et al.Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction[J]. Metab Eng, 2019, 54:109-116. [71] Gu F, Jiang W, Mu Y, et al.Quorum sensing-based dual-function switch and its application in solving two key metabolic engineering problems[J]. ACS Synthetic Biology, 2020, 9(2):209-217. [72] Burg JM, Cooper CB, Ye Z, et al.Large-scale bioprocess competitiveness:the potential of dynamic metabolic control in two-stage fermentations[J]. Current Opinion in Chemical Engineering, 2016, 14:121-136. [73] Liu D, Xiao Y, Evans B S, et al.Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator[J]. ACS Synthetic Biology, 2015, 4(2):132-140. [74] Zargar A, Quan DN, Bentley WE.Enhancing intercellular coordination:Rewiring quorum sensing networks for increased protein expression through autonomous induction[J]. ACS Synthetic Biology, 2016, 5(9):923-928. [75] Shi S, Ang EL, Zhao H.In vivo biosensors:mechanisms, development, and applications[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(7):491-516. [76] Zhang F, Keasling J.Biosensors and their applications in microbial metabolic engineering[J]. Trends Microbiol, 2011, 19(7):323-329. [77] Cao J, Yao Y, Fan K, et al. Harnessing a previously unidentified capability of bacterial allosteric transcription factors for sensing diverse small molecules in vitro[J]. Science Advances, 2018, 4(11):eaau4602. [78] Venayak N, von Kamp A, Klamt S, et al. MoVE identifies metabolic valves to switch between phenotypic states[J]. Nature Communications, 2018, 9(1):1-9. [79] Younger AKD, Su PY, Shepard AJ, et al.Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion[J]. Protein Eng Des Sel, 2018, 31(2):55-63. [80] Younger AKD, Dalvie NC, Rottinghaus AG, et al.Engineering modular biosensors to confer metabolite-responsive regulation of transcription[J]. ACS Synth Biol, 2017, 6(2):311-325. [81] Ceroni F, Blount BA, Ellis T.Sensing the right time to be productive[J]. Cell Systems, 2016, 3(2):116-117. [82] Pinto D, Vecchione S, Wu H, et al.Engineering orthogonal synthetic timer circuits based on extracytoplasmic function σ factors[J]. Nucleic Acids Res, 2018, 46(14):7450-7464. [83] Meyer AJ, Segall-Shapiro TH, Glassey E, et al.Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors[J]. Nature Chemical Biology, 2019, 15(2):196-204. [84] Tan D, Wu Q, Chen JC, et al.Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates[J]. Metabolic Engineering, 2014, 26:34-47. [85] Dai Z, Lee A J, Roberts S, et al.Versatile biomanufacturing through stimulus-responsive cell-material feedback[J]. Nature Chemical Biology, 2019, 15(10):1017-1024. [86] Chappell J, Westbrook A, Verosloff M, et al.Computational design of small transcription activating RNAs for versatile and dynamic gene regulation[J]. Nature Communications, 2017, 8(1):1-12. [87] Baumschlager A, Aoki SK, Khammash M.Dynamic blue light-inducible T7 RNA polymerases(Opto-T7RNAPs)for precise spatiotemporal gene expression control[J]. ACS Synthetic Biology, 2017, 6(11):2157-2167. [88] Tan SZ, Prather KLJ.Dynamic pathway regulation:recent advances and methods of construction[J]. Current Opinion in Chemical Biology, 2017, 41:28-35. [89] Borkowski O, Bricio C, Murgiano M, et al.Cell-free prediction of protein expression costs for growing cells[J]. Nature Communications, 2018, 9(1):1-11. [90] Stephens K, Pozo M, Tsao CY, et al.Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition[J]. Nature Communications, 2019, 10(1):1-11. [91] Honjo H, Iwasaki K, Soma Y, et al.Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production[J]. Metab Eng, 2019, 55:268-275. [92] He X, Chen Y, Liang Q, et al.Autoinduced AND gate controls metabolic pathway dynamically in response to microbial communities and cell physiological state[J]. ACS Synthetic Biology, 2017, 6(3):463-470. [93] Pai A, Tanouchi Y, Collins CH, et al.Engineering multicellular systems by cell-cell communication[J]. Current Opinion in Biotechnology, 2009, 20(4):461-470. [94] Sedlmayer F, Hell D, Müller M, et al.Designer cells programming quorum-sensing interference with microbes[J]. Nature Communications, 2018, 9(1):1-13. [95] Kobayashi H, Kaern M, Araki M, et al.Programmable cells:interfacing natural and engineered gene networks[J]. PNAS, 2004, 101(22):8414-8419. [96] Saltepe B, Kehribar ES, Su YirmibeŞoğlu SS, et al. Cellular biosensors with engineered genetic circuits[J]. ACS sensors, 2018, 3(1):13-26. |
[1] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[2] | 李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79. |
[3] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[4] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[5] | 李仁瀚, 张乐乐, 刘春立, 刘秀霞, 白仲虎, 杨艳坤, 李业. 基于紫色杆菌素生物合成途径的L-色氨酸生物传感器的构建[J]. 生物技术通报, 2023, 39(10): 80-92. |
[6] | 陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149. |
[7] | 周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127. |
[8] | 郭晓真, 张学福. 植物合成生物学领域发展态势的文献计量分析[J]. 生物技术通报, 2022, 38(2): 289-296. |
[9] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[10] | 叶敏, 高教琪, 周雍进. 非常规酵母细胞工厂合成天然产物[J]. 生物技术通报, 2021, 37(8): 12-24. |
[11] | 王鹏飞, 杨敏, 朱龙佼, 许文涛. 基于铂纳米团簇的生物传感研究进展[J]. 生物技术通报, 2021, 37(12): 235-242. |
[12] | 赵颖, 王楠, 陆安祥, 冯晓元, 郭晓军, 栾云霞. 核酸适配体侧流层析分析技术在真菌毒素检测中的应用[J]. 生物技术通报, 2020, 36(8): 217-227. |
[13] | 方顺燕, 宋丹, 刘艳萍, 徐文娟, 刘佳瑶, 韩向峙, 龙峰. 用于Escherichia coli O157∶H7直接快速检测的倏逝波荧光核酸适配体传感器研究[J]. 生物技术通报, 2020, 36(7): 228-234. |
[14] | 常瀚文, 郑鑫铃, 骆健美, 王敏, 申雁冰. 抗逆元件及其在高效微生物细胞工厂构建中的应用进展[J]. 生物技术通报, 2020, 36(6): 13-34. |
[15] | 杨敏, 李舒婷, 杨文平, 李相阳, 许文涛. DNA/银纳米簇介导的功能核酸生物传感器研究进展[J]. 生物技术通报, 2020, 36(6): 245-254. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||