生物技术通报 ›› 2021, Vol. 37 ›› Issue (1): 113-122.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1195
收稿日期:
2020-09-22
出版日期:
2021-01-26
发布日期:
2021-01-15
作者简介:
马涛,男,博士,副研究员,研究方向:反刍动物健康养殖;E-mail: 基金资助:
MA Tao1(), LU Wei2, LI Song-li2, FAN Xia3()
Received:
2020-09-22
Published:
2021-01-26
Online:
2021-01-15
摘要:
目前,绝大部分抗生素用于给人类提供肉奶蛋等食品的畜禽,由此产生的抗生素耐药性对全球公众健康造成了巨大威胁。为了降低畜禽生产环节抗生素耐药性向人类的传播,首先需要明确畜禽消化道或产品微生物携带哪些耐药基因。耐药组指的是某个环境微生物群落全部耐药基因的总和,近年来对于畜禽生产过程中耐药组分析成为研究热点之一。本文综述了基于测序技术研究畜禽(猪、鸡、反刍动物)消化道以及乳中微生物耐药组组成及其影响因素的最新进展,并提出了未来研究方向,包括耐药组研究方法的标准化、基于宏转录组的耐药组基因表达研究,以及可移动遗传元件所携带的耐药基因等,旨在为调控畜禽养殖过程中耐药基因提供思路。
马涛, 陆唯, 李松励, 樊霞. 畜禽微生物耐药组研究进展[J]. 生物技术通报, 2021, 37(1): 113-122.
MA Tao, LU Wei, LI Song-li, FAN Xia. Research Advance in the Resistome in the Microbiome of Livestock Animals[J]. Biotechnology Bulletin, 2021, 37(1): 113-122.
[1] | O’Neill J. Tackling drug-resistant infections globally:final report and recommendations. the review on antimicrobial resistance[M]. London:HM Government and the Wellcome Trust, 2016. |
[2] |
Van Boeckel TP, Pires J, Silvester R, et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries[J]. Science, 2019, 365:eaaw1944.
doi: 10.1126/science.aaw1944 URL pmid: 31604207 |
[3] | Cogliani C, Goossens H, Greko C. Restricting antimicrobial use in food animals:lessons from Europe:banning nonessential antibiotic uses in food animals is intended to reduce pools of resistance genes[J]. Microbe, 2011,6:274-279. |
[4] |
Silbergeld EK, Graham J, Price LB. Industrial food animal production, antimicrobial resistance, and human health[J]. Annual Review of Public Health, 2008,29:151-169.
URL pmid: 18348709 |
[5] |
Van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences of The United States of America, 2015,112:5649-5654.
URL pmid: 25792457 |
[6] | Campagnolo ER, Johnson KR, Karpati A, et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations[J]. Science of the Total Environment, 2002,299:89-95. |
[7] |
Heuer H, Solehati Q, Zimmerling U, et al. Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine[J]. Applied and Environmental Microbiology, 2011,77:2527-2530.
URL pmid: 21296942 |
[8] |
Hao H, Cheng G, Iqbal Z, et al. Benefits and risks of antimicrobial use in food-producing animals[J]. Frontiers in Microbiology, 2014,5:288.
URL pmid: 24971079 |
[9] |
Liu J, Taft DH, Maldonado-Gomez MX, et al. The fecal resistome of dairy cattle is associated with diet during nursing[J]. Nature Communications, 2019,10:4406.
doi: 10.1038/s41467-019-12111-x URL pmid: 31562300 |
[10] | Tang KL, Caffrey NP, Nóbrega DB, et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings:A systematic review and meta-analysis[J]. The Lancet Planetary Health, 2017,1(8):e316-e327. |
[11] |
World Health Organization. WHO guidelines on use of medically important antimicrobials in food-producing animals[J]. Antimicrob Resist Infect Control, 2017. https//doi.org/10.1186/s13756-017-0294-9.
doi: 10.1186/s13756-020-00875-7 URL pmid: 33407833 |
[12] | Ho J, Yeoh YK, Barua N, et al. Systematic review of human gut resistome studies revealed variable definitions and approaches[J]. Gut Microbes, 2020,12(1):1700755. |
[13] |
Baquero F. Metagenomic epidemiology:a public health need for the control of antimicrobial resistance[J]. Clinical Microbiology and Infection, 2012,18:67-73.
doi: 10.1111/j.1469-0691.2011.03537.x URL pmid: 21790857 |
[14] |
Miller RR, Montoya V, Gardy JL, et al. Metagenomics for pathogen detection in public health[J]. Genome Medicine, 2013,5:81.
URL pmid: 24050114 |
[15] | Wright GD. The antibiotic resistome:the nexus of chemical and genetic diversity[J]. Nature Review Microbiology, 2007,5:175-186. |
[16] | Perry JA, Wright GD. Forces shaping the antibiotic resistome[J]. BioEssays, 2014,36:1179-1184. |
[17] |
Rose G, Shaw AG, Sim K, et al. Antibiotic resistance potential of the healthy preterm infant gut microbiome[J]. PeerJ, 2017,5:e2928.
URL pmid: 28149696 |
[18] |
Lee K, Kim DW, Lee DH, et al. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance[J]. Microbiome, 2020,8:2.
doi: 10.1186/s40168-019-0774-7 URL pmid: 31910889 |
[19] |
Rowe W, Verner-Jeffreys DW, Baker-Austin C, et al. Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment[J]. Water Science & Technology, 2016,73:1541-1549.
URL pmid: 27054725 |
[20] | Ma L, Li B, Jiang XT, et al. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey[J]. Microbiome, 2017,5:154. |
[21] | Tao W, Zhang XX, Zhao F, et al. High levels of antibiotic resistance genes and their correlations with bacterial community and mobile genetic elements in pharmaceutical wastewater treatment bioreactors[J]. PLoS One, 2016,11:e0156854. |
[22] |
Lee JH, Park KS, Jeon JH, et al. Antibiotic resistance in soil[J]. The Lancet Infectious Diseases, 2018,18:1306-1307.
URL pmid: 30507447 |
[23] | Van Goethem MW, Pierneef R, Bezuidt OKI, et al. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils[J]. Microbiome, 2018,6:40. |
[24] | Boolchandani M, D’Souza AW, Dantas G. Sequencing-based methods and resources to study antimicrobial resistance[J]. Nature Review Genetics, 2019,20:356-370. |
[25] | Henderiksen RS, Bortolaia V, Tate H, et al. Using genomics to track global antimicrobial resistance[J]. Frontiers in Microbiology, 2019,7:242. |
[26] | Clausen PT, Zankari E, Aarestrup FM, et al. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data[J]. Journal of Antimicrobial Chemotherapy, 2016,71:2484-2488. |
[27] | Mason A, Foster D, Bradley P, et al. Accuracy of different bioinformatics methods in detecting antibiotic resistance and virulence factors from Staphylococcus aureus whole-genome sequences[J]. Journal of Clinical Microbiology, 2018,56:e01815-17. |
[28] | Yin X, Jiang XT, Chai B, et al. ARGs-OAP v2. 0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes[J]. Bioinformatics, 2018,34:2263-2270. |
[29] |
Scaria J, Chandramouli U, Verma SK. Antibiotic Resistance Genes Online(ARGO):a Database on vancomycin and beta-lactam resistance genes[J]. Bioinformation, 2005,1:5-7.
URL pmid: 17597841 |
[30] | Liu B, Pop M. ARDB-antibiotic resistance genes database[J]. Nucleic Acids Research, 2009,37:D4437. |
[31] | Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes[J]. Journal of Antimicrobial Chemotherapy, 2012,67:2640-2644. |
[32] |
Jia B, Raphenya AR, Alcock B, et al. CARD 2017:expansion and model-centric curation of the comprehensive antibiotic resistance database[J]. Nucleic Acids Research, 2017,45:D566-D573.
URL pmid: 27789705 |
[33] | Flandrois JP, Lina G, Dumitrescu O. MUBII-TB-DB:a database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis[J]. BMC Bioinformatics, 2014,15:107. |
[34] | Zankari E, Allesoe R, Joensen KG, et al. PointFinder:a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens[J]. Journal of Antimicrobial Chemotherapy, 2017,72:2764-2768. |
[35] |
Ottoni JR, Cabral L, de Sousa STP, et al. Functional metagenomics of oil-impacted mangrove sediments reveals high abundance of hydrolases of biotechnological interest[J]. World Journal of Microbiology & Biotechnology, 2017,33:141.
URL pmid: 28593475 |
[36] | Van Der Helm E, Imamovic L, Ellabaan MMH, et al. Rapid resistome mapping using nanopore sequencing[J]. Nucleic Acids Research, 2017,45:1-8. |
[37] | Marathe NP, Janzon A, Kotsakis SD, et al. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste[J]. Environment International, 2018,112:279-286. |
[38] | 印蕾, 高向东, 顾觉奋. 宏基因组技术研究进展[J]. 中国医药生物技术, 2012,6:216-220. |
Yin L, Gao JD, Gu JF. Research advance in metagenome techniques[J]. China Medicinal Biotechnology, 2012,6:216-220. | |
[39] | 何荣, 原珂, 林里, 等. 功能宏基因组在新型抗生素耐药基因研究中的应用进展[J]. 环境化学, 2019,38:1548-1556. |
He R, Yuan K, Lin L, et al. Functional metagenomics:One of the most robust tools for discovering new antibiotics resistance genes[J]. Environmental Chemistry, 2019,38:1548-1556. | |
[40] | Wichmann F, Udikovic-Kolic N, Andrew S, et al. Diverse antibiotic resistance genes in dairy cow manure[J]. mBio, 2014,5(2):e01017. |
[41] | Volz C, Ramoni J, Beisken S, et al. Clinical resistome screening of 1, 110 Escherichia coli isolates efficiently recovers diagnostically relevant antibiotic resistance biomarkers and potential novel resistance mechanisms[J]. Frontiers in Microbiology, 2019,10:1671. |
[42] | Sundin GW, Wang N. Antibiotic resistance in plant-pathogenic bacteria[J]. Annual Review of Phytopathology, 2018,56:161-180. |
[43] | Gonzales-Marin C, Spratt DA, Millar MR, et al. Identification of bacteria and potential sources in neonates at risk of infection delivered by Caesarean and vaginal birth[J]. Journal of Medical Microbiology, 2012,61:31-41. |
[44] | Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature[J]. Frontiers in Microbiology, 2013,4:47. |
[45] | Pakpour S, Jabaji S, Chénier MR. Frequency of antibiotic resistance in a swine facility 2. 5 years after a ban on antibiotics[J]. Microbial Ecology, 2012,63:41-50. |
[46] | Agga GE, Arthur TM, Durso LM, et al. Antimicrobial-resistant bacterial populations and antimicrobial resistance genes obtained from environments impacted by livestock and municipal waste[J]. PLoS One, 2015,10:e132586. |
[47] | Chambers L, Yang Y, Littier H, et al. Metagenomic analysis of antibiotic resistance genes in dairy cow feces following therapeutic administration of third generation cephalosporin[J]. PLoS One, 2015,10:e0133764. |
[48] | Looft T, Johnson TA, Allen HK, et al. In-feed antibiotic effects on the swine intestinal microbiome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109:1691-1696. |
[49] | Zeineldin M, Aldridge B, Lowe J. Antimicrobial effects on swine gastrointestinal microbiota and their accompanying antibiotic resistome[J]. Frontiers in Microbiology, 2019,10:1035. |
[50] | Wang C, Li P, Yan Q, et al. Characterization of the pig gut microbiome and antibiotic resistome in industrialized feedlots in China[J]. mSystems, 2019,4(6):e00206-19. |
[51] | Munk P, Knudsen BE, Lukjancenko O, et al. Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries[J]. Nature Microbiology, 2018,3:898-908. |
[52] | Ghanbari M, Klose V, Crispie F, et al. The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline[J]. Scientific Reports, 2019,9:4062. |
[53] | Fang H, Han L, Cui Y, et al. Changes in soil microbial community structure and function associated with degradation and resistance of carbendazim and chlortetracycline during repeated treatments[J]. Science of the Total Environment, 2016,572:1203-1212. |
[54] | Xiong W, Wang Y, Sun Y, et al. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes[J]. Microbiome, 2018,6:34. |
[55] | Auffret MD, Dewhurst RJ, Duthie CA, et al. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle[J]. Microbiome, 2017,5:159. |
[56] | Thomas M, Webb M, Ghimire S, et al. Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle[J]. Scientific Reports, 2017,7:12257. |
[57] | Hitch TCA, Thomas BJ, Friedersdorff JCA, et al. Deep sequence analysis reveals the ovine rumen as a reservoir of antibiotic resistance genes[J]. Environmental Pollution, 2018,235:571-575. |
[58] | Vikram A, Rovira P, Agga GE, et al. Impact of “raised without antibiotics” beef cattle production practices on occurrences of antimicrobial resistance[J]. Applied and Environmental Microbiology, 2017,83:e01682-17. |
[59] | Murray GM, Cassidy JP, Clegg TA, et al. A retrospective epidemiological analysis of risk factors for a primary necropsy diagnosis of bovine respiratory disease[J]. Preventive Veterinary Medicine, 2016,132:49-56. |
[60] | O’Connor, Yuan AM, Cullen C, et al. A mixed treatment meta-analysis of antibiotic treatment options for bovine respiratory disease - An update[J]. Preventive Veterinary Medicine, 2016,132:130-139. |
[61] | Abell KM, Theurer ME, Larson RL, et al. A mixed treatment comparison meta-analysis of metaphylaxis treatments for bovine respiratory disease in beef cattle[J]. Journal of Animal Science, 2017,95:626-635. |
[62] | Doster E, Rovira P, Noyes NR, et al. Investigating effects of tulathromycin metaphylaxis on the fecal resistome and microbiome of commercial feedlot cattle early in the feeding period[J]. Frontiers in Microbiology, 2018,9:1715. |
[63] | Rovira P, McAllister T, Lakin SM, et al. Characterization of the microbial resistome in conventional and “raised without antibiotics” beef and dairy production systems[J]. Frontiers in Microbiology, 2019,10:1980. |
[64] | Keijser BJF, Agamennone V, van den Broek TJ, et al. Dose-dependent impact of oxytetracycline on the veal calf microbiome and resistome[J]. BMC Genomics, 2019,20:65. |
[65] | Huebner K, Martin JN, Weissend CJ, et al. Effects of a Saccharomyces cerevisiae fermentation product on liver abscesses, fecal microbiome, and resistome in feedlot cattle raised without antibiotics[J]. Scientific Reports, 2019,9:2559. |
[66] | Liu J, Zhu Y, Jay-Russell M, et al. Reservoirs of antimicrobial resistance genes in retail raw milk[J]. Microbiome, 2020,8:99. |
[67] | Caudell MA, Mair C, Subbiah M, et al. Identification of risk factors associated with carriage of resistant Escherichia coli in three culturally diverse ethnic groups in Tanzania:a biological and socioeconomic analysis[J]. Lancet Planet Health, 2018,2:e489-e497. |
[68] | Pizauro LJL, de Almeida CC, Soltes GA, et al. Short communication:Detection of antibiotic resistance, mecA, and virulence genes in coagulase-negative Staphylococcus spp. from buffalo milk and the milking environment[J]. Journal of Dairy Science, 2019,102:11459-11464. |
[69] | Dangour AD, Watson L, Cumming O, et al. Interventions to improve water quality and supply, sanitation and hygiene practices, and their effects on the nutritional status of children[J]. Cochrane Database of Systematic Review, 2013, 8:CD009382. |
[70] | Williams PCM, Isaacs D, Berkley JA. Antimicrobial resistance among children in sub-Saharan Africa[J]. Lancet Infectious Disease, 2018,18:E33-E44. |
[71] | Zankari E, Hasman H, Kaas RS, et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing[J]. Journal of Antimicrobial Chemotherapy, 2013,68:771-777. |
[72] | Clausen PT, Zankari E, Aarestrup FM, et al. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data[J]. Journal of Antimicrobial Chemotherapy, 2016,71:2484-2488. |
[73] | Xavier BB, Das AJ, Cochrane G, et al. Consolidating and exploring antibiotic resistance gene data resources[J]. Journal of Clinical Microbiology, 2016,54:851-859. |
[74] | Stalder T, Press MO, Sullivan S, et al. Linking the resistome and plasmidome to the microbiome[J]. The ISME Journal, 2019,13:2437-2446. |
[75] | McCarthy AJ, Loeffler A, Witney AA, et al. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo[J]. Genome Biology and Evolution, 2014,6:2697-2708. |
[76] | Caro-Quintero A, Konstantinidis KT. Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria[J]. The ISME Journal, 2014,9:958-967. |
[77] | Wang Y, Hu Y, Liu F, et al. Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes[J]. Environmental International, 2020,138:105649. |
[78] | Kav AB, Sasson G, Jami E, et al. Insights into the bovine rumen plasmidome[J]. Proceedings of the National Academy of Sciences of the United States of America. 2012,109:5452-5457. |
[79] | Leplae R, Lima-Mendez G, Toussaint A. ACLAME:a CLAssification of mobile genetic elements, update 2010[J]. Nucleic Acids Research. 2010,38:D57-D61. |
[80] | Carattoli A, Zankari E, García-Fernández A, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing[J]. Antimicrobial Agents Chemotherapy, 2014,58:3895-3903. |
[81] | Bickhart DM, Watson M, Koren S, et al. Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation[J]. Genome Biology, 2019,20:1-8. |
[82] | Sorek R, Cossart P. Prokaryotic transcriptomics:a new view on regulation, physiology and pathogenicity[J]. Nature Review Genetics, 2010,11:9-16. |
[83] | Ju F, Beck K, Yin X, et al. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes[J]. The ISME Journal, 2019,13:346-360. |
[84] | Wang R, van Dorp L, Shaw LP, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1[J]. Nature Communications, 2018,9:1179. |
[85] | 王亚楠, 胡永飞, 朱宝利, 等. 养殖动物及其相关环境耐药组的研究进展[J]. 生物工程学报, 2018,34:1226-1233. |
Wang YN, Hu YF, Zhu BL, et al. Antibiotic resistome in farm animals and their related environments:a review[J]. Chin J Biotech, 2018,34(8):1226-1233. |
[1] | 周振超, 郑吉, 帅馨怡, 林泽俊, 陈红. 高通量分析人类粪便、皮肤和水环境中共享抗生素抗性基因的分布[J]. 生物技术通报, 2023, 39(7): 288-297. |
[2] | 陈勇, 李亚鑫, 王亚瑄, 梁露洁, 冯思源, 田国宝. MCR-1介导多黏菌素耐药性的分子机制研究进展[J]. 生物技术通报, 2023, 39(6): 102-108. |
[3] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[4] | 张岩峰, 丁燕玲, 马应, 周小南, 杨朝云, 史远刚, 康晓龙. 肉牛剩余采食量相关瘤胃及粪便微生物特征比较分析[J]. 生物技术通报, 2023, 39(1): 295-304. |
[5] | 胡雪莹, 张越, 郭雅杰, 仇天雷, 高敏, 孙兴滨, 王旭明. 不同施肥处理农田土壤中噬菌体与细菌携带抗生素抗性基因的比较[J]. 生物技术通报, 2022, 38(9): 116-126. |
[6] | 文畅, 刘晨, 卢诗韵, 许忠兵, 艾超凡, 廖汉鹏, 周顺桂. 一株新的多重耐药福氏志贺菌噬菌体生物学特性及基因组分析[J]. 生物技术通报, 2022, 38(9): 127-135. |
[7] | 鲁兆祥, 王夕冉, 连新磊, 廖晓萍, 刘雅红, 孙坚. 基于功能宏基因组学挖掘抗生素耐药基因研究进展[J]. 生物技术通报, 2022, 38(9): 17-27. |
[8] | 刘成程, 胡小芳, 冯友军. 细菌耐药:生化机制与应对策略[J]. 生物技术通报, 2022, 38(9): 4-16. |
[9] | 李柳, 穆迎春, 刘璐, 张洪玉, 徐锦华, 杨臻, 乔璐, 宋金龙. 氟喹诺酮类抗生素及耐药基因污染控制的研究进展[J]. 生物技术通报, 2022, 38(9): 84-95. |
[10] | 刘晓黎, 童真艺, 赵亮, 尹丽, 刘晨光. 非抗生素类活性物质抗幽门螺杆菌研究进展[J]. 生物技术通报, 2022, 38(9): 96-105. |
[11] | 朱浩, 张严伟, 刘润, 梁艳, 杨奕, 徐天乐, 杨章平. 抗生素佐剂与抗生素联用的抑菌作用研究进展[J]. 生物技术通报, 2022, 38(6): 66-73. |
[12] | 王孝芳, 万金鑫, 韦中, 徐阳春, 沈其荣. 畜禽粪便堆肥过程中微生物群落演替[J]. 生物技术通报, 2022, 38(5): 13-21. |
[13] | 张雨函, 范熠, 李婷婷, 庞爽, 刘为, 白可喻, 张西美. 基于宏基因组测序的植物叶表微生物富集及DNA提取方法[J]. 生物技术通报, 2022, 38(3): 256-263. |
[14] | 许来鹏, 万鲜花, 孙向丽, 曹艳芳, 李慧, 田亚东, 刘小军, 康相涛, 王彦彬. 畜禽粪肥和秸秆还田对玉米根际微生物群落结构的影响[J]. 生物技术通报, 2020, 36(9): 137-146. |
[15] | 马涛, 刁其玉. 益生菌调控幼龄畜禽消化道微生物研究进展[J]. 生物技术通报, 2020, 36(2): 17-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||