生物技术通报 ›› 2021, Vol. 37 ›› Issue (11): 81-91.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0659
• 食用菌生物技术专题(专题主编: 黄晨阳) • 上一篇 下一篇
王昭玉1(), 常明昌1,2(), 徐丽婧1,2(), 孟俊龙1,2, 左宁柯1, 潘旭1
收稿日期:
2021-05-25
出版日期:
2021-11-26
发布日期:
2021-12-03
作者简介:
王昭玉,女,硕士研究生,研究方向:食用菌;E-mail: 基金资助:
WANG Zhao-yu1(), CHANG Ming-chang1,2(), XU Li-jing1,2(), MENG Jun-long1,2, ZUO Ning-ke1, PAN Xu1
Received:
2021-05-25
Published:
2021-11-26
Online:
2021-12-03
摘要:
为探讨灵芝子实体(GLM)、菌丝体(GLHM)和孢子(GLSM)黑色素结构和理化性质的差异,通过元素分析、紫外-可见光谱和傅里叶红外光谱等手段分析这3种黑色素的结构,并对这3种黑色素的理化性质如溶解性、色价、稳定性及体外抗氧化活性和对胰脂肪酶活性的抑制作用进行了比较研究。结果表明,这3种黑色素为真黑色素。与灵芝子实体和孢子黑色素相比,灵芝菌丝体黑色素具有更好的溶解性、色价和稳定性以及具有较强的体外抗氧化活性和体外对胰脂肪酶活性的抑制作用。研究结果为灵芝菌丝体黑色素的生物活性和实际应用提供理论基础。
王昭玉, 常明昌, 徐丽婧, 孟俊龙, 左宁柯, 潘旭. 灵芝子实体、菌丝体和孢子黑色素的结构表征与理化性质研究[J]. 生物技术通报, 2021, 37(11): 81-91.
WANG Zhao-yu, CHANG Ming-chang, XU Li-jing, MENG Jun-long, ZUO Ning-ke, PAN Xu. Structural Characterization,Physicochemical Properties of Melanin from Fruiting Body,Hyphae and Spores of Ganoderma lucidum[J]. Biotechnology Bulletin, 2021, 37(11): 81-91.
图1 同源灵芝子实体、菌丝体和孢子黑色素 A:灵芝子实体黑色素;B:灵芝菌丝体黑色素;C:灵芝孢子黑色素。下同
Fig. 1 Melanin of fruiting body,hyphae and spores of homologous G. lucidum A:Melanin in G. lucidum fruiting body(GLM). B:Melanin in G. lucidum hyphae(GLHM). C:Melanin in G. lucidum spores(GLSM). The same below
来源Source | 元素组成Element composition/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | S | C/N | C/H | O/N | S/N | ||
灵芝子实体黑色素GLM | 53.97 | 5.28 | 2.65 | 37.60 | 0.50 | 20.36 | 10.22 | 14.18 | 0.013 | |
灵芝菌丝体黑色素GLHM | 56.97 | 5.66 | 4.53 | 32.33 | 0.51 | 12.58 | 10.06 | 7.13 | 0.015 | |
灵芝孢子黑色素GLSM | 50.32 | 5.23 | 7.39 | 36.43 | 0.63 | 6.8 | 9.62 | 4.92 | 0.017 | |
合成真黑色素Synthetic DOPA melanin | 56.45 | 3.15 | 8.49 | 31.82 | 0.09 | 6.64 | 17.92 | 3.75 | 0.010 | |
棕黑色素Phaeomelanin | 46.24 | 4.46 | 9.36 | 30.16 | 9.78 | 4.94 | 10.37 | 3.22 | 1.040 |
表1 灵芝子实体、菌丝体和孢子黑色素的元素组成分析
Table 1 Elemental composition analysis of GLM,GLHM and GLSM
来源Source | 元素组成Element composition/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O | S | C/N | C/H | O/N | S/N | ||
灵芝子实体黑色素GLM | 53.97 | 5.28 | 2.65 | 37.60 | 0.50 | 20.36 | 10.22 | 14.18 | 0.013 | |
灵芝菌丝体黑色素GLHM | 56.97 | 5.66 | 4.53 | 32.33 | 0.51 | 12.58 | 10.06 | 7.13 | 0.015 | |
灵芝孢子黑色素GLSM | 50.32 | 5.23 | 7.39 | 36.43 | 0.63 | 6.8 | 9.62 | 4.92 | 0.017 | |
合成真黑色素Synthetic DOPA melanin | 56.45 | 3.15 | 8.49 | 31.82 | 0.09 | 6.64 | 17.92 | 3.75 | 0.010 | |
棕黑色素Phaeomelanin | 46.24 | 4.46 | 9.36 | 30.16 | 9.78 | 4.94 | 10.37 | 3.22 | 1.040 |
溶液Solution | 灵芝子实体黑色素GLM | 灵芝菌丝体黑色素GLHM | 灵芝孢子黑色素GLSM |
---|---|---|---|
1 mol·L-1 HCl | - | - | - |
1 mol·L-1 NaOH | 0.897±0.002 | 0.884±0.004 | 0.861±0.005 |
1 mol·L-1 NaCl | - | - | - |
蒸馏水Distilled water | - | - | - |
正丁醇N-butanol | - | - | - |
无水乙醇Absolute alcohol | 0.009±0.001 | - | - |
75%无水乙醇75% absolute alcohol | 0.015±0.002 | 0.016±0.001 | - |
异丙醇Isopropanol | - | - | - |
氯仿Chloroform | - | - | - |
乙酸乙酯Ethyl acetate | - | - | - |
表2 灵芝子实体、菌丝体和孢子黑色素的溶解性
Table 2 Solubility of GLM,GLHM and GLSM
溶液Solution | 灵芝子实体黑色素GLM | 灵芝菌丝体黑色素GLHM | 灵芝孢子黑色素GLSM |
---|---|---|---|
1 mol·L-1 HCl | - | - | - |
1 mol·L-1 NaOH | 0.897±0.002 | 0.884±0.004 | 0.861±0.005 |
1 mol·L-1 NaCl | - | - | - |
蒸馏水Distilled water | - | - | - |
正丁醇N-butanol | - | - | - |
无水乙醇Absolute alcohol | 0.009±0.001 | - | - |
75%无水乙醇75% absolute alcohol | 0.015±0.002 | 0.016±0.001 | - |
异丙醇Isopropanol | - | - | - |
氯仿Chloroform | - | - | - |
乙酸乙酯Ethyl acetate | - | - | - |
图4 灵芝子实体、菌丝体和孢子黑色素的温度稳定性和pH稳定性 A:灵芝子实体黑色素的温度稳定性;B:灵芝菌丝体黑色素的温度稳定性;C:灵芝孢子黑色素的温度稳定性;D:灵芝子实体、菌丝体和孢子黑色素的pH稳定性。图中误差线表示标准偏差。下同
Fig. 4 Thermal and pH stability of GLM,GLHM and GLSM A:Thermal stability of GLM. B:Thermal stability of GLHM. C:Thermal stability of GLSM. D:pH stability of GLM,GLHM and GLSM. The error line in the figure refers to the standard deviation. The same below
图5 灵芝子实体、菌丝体和孢子黑色素的光照稳定性和氧化还原性 A:灵芝子实体黑色素的光照稳定性;B:灵芝菌丝体黑色素的光照稳定性;C:灵芝孢子黑色素的光照稳定性;D:灵芝子实体、菌丝体和孢子黑色素的H2O2稳定性;E:灵芝子实体、菌丝体和孢子黑色素的Na2SO3稳定性
Fig. 5 Light stability and oxidation reduction of GLM,GLHM and GLSM A:Light stability of GLM. B:Light stability of GLHM. C:Light stability of GLSM. D:Stability of H2O2 in GLM,GLHM and GLSM. E:Stability of Na2SO3 in GLM,GLHM and GLSM
图6 灵芝子实体、菌丝体和孢子黑色素的体外抗氧化活性 A:灵芝子实体、菌丝体和孢子黑色素对DPPH的清除能力;B:灵芝子实体、菌丝体和孢子黑色素的还原能力;C:灵芝子实体、菌丝体和孢子黑色素超氧根阴离子清除能力;D:灵芝子实体、菌丝体和孢子黑色素羟基自由基的清除能力。小写字母表示的是同一浓度下Vc、灵芝子实体黑色素、灵芝菌丝体黑色素和孢子黑色素间差异达到了(P<0.05)显著水平,下同
Fig. 6 Antioxidant activities of GLM,GLHM and GLSM in vitro A:DPPH scavenging capacity of GLM,GLHM and GLSM. B:Reducing ability of GLM,GLHM and GLSM. C:Superoxide anion radical-scavenging ability of GLM,GLHM and GLSM. D:Hydroxyl radical scavenging ability of GLM,GLHM and GLSM. The lowercase letters indicate that the difference among VC,GLM,GLHM and GLSM at the same concentration reached a significant level(P< 0.05). The same below
[1] |
Riley PA. Melanin[J]. Int J Biochem Cell Biol, 1997, 29(11): 1235-1239.
doi: 10.1016/S1357-2725(97)00013-7 URL |
[2] |
Langfelder K, Streibel M, Jahn B, et al. Biosynjournal of fungal melanins and their importance for human pathogenic fungi[J]. Fungal Genet Biol, 2003, 38(2): 143-158.
pmid: 12620252 |
[3] |
Zou Y, Yang Y, Zeng B, et al. Comparison of physicochemical properties and antioxidant activities of melanins from fruit-bodies and fermentation broths of Auricularia auricula[J]. Int J Food Prop, 2013, 16(4): 803-813.
doi: 10.1080/10942912.2011.567433 URL |
[4] |
Shi F, Li J, Yang L, et al. Hypolipidemic effect and protection ability of liver-kidney functions of melanin from Lachnum YM226 in high-fat diet fed mice[J]. Food Funct, 2018, 9(2): 880-889.
doi: 10.1039/C7FO01294B URL |
[5] |
Hou RL, Liu X, Yan JJ, et al. Characterization of natural melanin from Auricularia Auricula and its hepatoprotective effect on acute alcohol liver injury in mice[J]. Food Funct, 2019, 10(2): 1017-1027.
doi: 10.1039/C8FO01624K URL |
[6] |
Li S, Yang L, Li J, et al. Structure, molecular modification, and anti-radiation activity of melanin from Lachnum YM156 on μLtraviolet B-induced injury in mice[J]. Appl Biochem Biotechnol, 2019, 188(2): 555-567.
doi: 10.1007/s12010-018-2898-9 URL |
[7] |
Xu LJ, Li J, Chang MC, et al. Comparison of physicochemical and biochemical properties of natural and arginine-modified melanin from medicinal mushroomGanoderma lucidum[J]. J Basic Microbiol, 2020, 60(11/12): 1014-1028.
doi: 10.1002/jobm.v60.11-12 URL |
[8] | 常明昌. 食用菌栽培学[M]. 北京: 中国农业出版社, 2003. |
Chang MC. Cultivation of edible fungi[M]. Beijing: China Agricultural Publishing House, 2003. | |
[9] |
Sun S, Zhang X, Chen W, et al. Production of natural edible melanin by Auricularia Auricula and its physicochemical properties[J]. Food Chem, 2016, 196: 486-492.
doi: 10.1016/j.foodchem.2015.09.069 URL |
[10] | 霍世欣, 周陶忆, 司晓晶, 等. 荷叶黄酮化合物对胰脂肪酶抑制作用的研究[J]. 天然产物研究与开发, 2008, 20(2): 328-331. |
Huo SX, Zhou TY, Si XJ, et al. Inhibitory effect on pancreatic lipase of flavonoids derived from Lotus leaf[J]. Nat Prod Res Dev, 2008, 20(2): 328-331. | |
[11] | 顾君, 孙怡. 侧柏叶不同提取部位抑制胰脂肪酶及抗氧化活性筛选[J]. 中国实验方剂学杂志, 2015, 21(14): 141-144. |
Gu J, Sun Y. Study on inhibition of pancreatic lipase and antioxidation from Platycladus orientalis leaves in vitro[J]. Chin J Exp Tradit Med Formulae, 2015, 21(14): 141-144. | |
[12] | 鲁明. 高粱黑粉菌黑色素分离、结构鉴定与生物活性研究[D]. 沈阳:沈阳农业大学, 2021. |
Lu M. Research on isolation, structure and bioactivies of melanins from Sphacelotheca reiliana[D]. Shenyang:Shenyang Agricultural University, 2021. | |
[13] | 侯若琳, 袁源, 项凯凯, 等. 纤维素酶-超声波协同提取黑木耳黑色素工艺及其抗氧化活性分析[J]. 菌物学报, 2019, 38(3): 414-427. |
Hou RL, Yuan Y, Xiang KK, et al. Cellulase and μLtrasonic wave synergistic extraction technology of melanin from Auricularia heimuer and analysis of antioxidant activity of the melanin product[J]. Mycosystema, 2019, 38(3): 414-427. | |
[14] | Ye M, Chen X, Li GW, et al. Structural characteristics of pheomelanin-like pigment from Lachnum singerianum[J]. Adv Mater Res, 2011, 284/285/286: 1742-1745. |
[15] | 李俊. 灵芝黑色素衍生物的制备以及性质研究[D]. 太谷:山西农业大学, 2019. |
Li J. Preparation and properties of Ganoderma lucidum melanin[D]. Taigu:Shanxi Agricultural University, 2019. | |
[16] | Wang HY, Jiang XL, Mu HJ, et al. Structure and protective effect of exopolysaccharide from P. Agglomerans strain KFS-9 against UV radiation[J]. Microbiol Res, 2007, 162(2): 124-129. |
[17] |
Barros L, Falcão S, Baptista P, et al. Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays[J]. Food Chem, 2008, 111(1): 61-66.
doi: 10.1016/j.foodchem.2008.03.033 URL |
[18] | 徐颖, 郭增军. 太白乌头提取物抗氧化活性研究[J]. 现代中药研究与实践, 2008, 22(1): 38-40. |
Xu Y, Guo ZJ. Study on antioxidant activity of extracts from Aconitum taipeicum[J]. Res Pract Chin Med, 2008, 22(1): 38-40. | |
[19] | 白生文, 汤超, 田京, 等. 沙棘果渣总黄酮提取工艺及抗氧化活性分析[J]. 食品科学, 2015, 36(10): 59-64. |
Bai SW, Tang C, Tian J, et al. Extraction and antioxidant activity of total flavonoids from sea buckthorn pomace[J]. Food Sci, 2015, 36(10): 59-64. | |
[20] | 石芳. 粒毛盘菌黑色素的精氨酸修饰及其生物活性研究[D]. 合肥:合肥工业大学, 2018. |
Shi F. Arginine modification and biological activity of melanin from Lachnum sp[D]. Hefei:Hefei University of Technology, 2018. | |
[21] |
Ito S, Fujita K. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography[J]. Anal Biochem, 1985, 144(2): 527-536.
pmid: 3993914 |
[22] |
Hou R, Liu X, Xiang K, et al. Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom[J]. Food Chem, 2019, 277: 533-542.
doi: 10.1016/j.foodchem.2018.11.002 URL |
[23] | 陈静, 丁洁, 沙芮, 等. 响应面法优化超声辅助提取黑芝麻黑色素的工艺[J]. 食品研究与开发, 2020, 41(2): 52-60. |
Chen J, Ding J, Sha R, et al. Optimization of black sesame melanin μLtrasonic assist extraction from black sesame by response surface methodology[J]. Food Res Dev, 2020, 41(2): 52-60. | |
[24] | 刘鑫, 袁源, 侯若琳, 等. 毛木耳黑色素提取条件优化及体外抗氧化活性研究[J]. 天然产物研究与开发, 2019, 31(10): 1688-1696, 1752. |
Liu X, Yuan Y, Hou RL, et al. Optimization of extraction conditions of melanin from Auricularia polytricha and its antioxidant activities in vitro[J]. Nat Prod Res Dev, 2019, 31(10): 1688-1696, 1752. | |
[25] |
Sun S, Zhang X, Sun S, et al. Production of natural melanin by Auricularia Auricula and study on its molecular structure[J]. Food Chem, 2016, 190: 801-807.
doi: 10.1016/j.foodchem.2015.06.042 URL |
[26] | 吕大进. 薏苡果壳黑色素提制鉴定、稳定性及其形成生理机制[D]. 重庆:西南大学, 2019. |
Lv DJ. The preparation identification, stability and formative physiological mechanism of melanins in seed hulls of Coix lacryma-jobi L[D]. Chongqing:Southwest University, 2019. | |
[27] |
Pan YM, Zhu ZR, Huang ZL, et al. Characterisation and free radical scavenging activities of novel red pigment from Osmanthus fragrans’ seeds[J]. Food Chem, 2009, 112(4): 909-913.
doi: 10.1016/j.foodchem.2008.06.077 URL |
[28] | 赵萍, 王雅, 魏明广, 等. 葵花籽壳黑色素提取鉴定及抗氧化性研究[J]. 食品工业科技, 2012, 33(22): 133-136, 140. |
Zhao P, Wang Y, Wei MG, et al. Study on extraction, identification and antioxidant activity of melanin of sunflower seed shell[J]. Sci Technol Food Ind, 2012, 33(22): 133-136, 140. | |
[29] |
Tu YG, Sun YZ, Tian YG, et al. Physicochemical characterisation and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl(Gallus gallus domesticus Brisson)[J]. Food Chem, 2009, 114(4): 1345-1350.
doi: 10.1016/j.foodchem.2008.11.015 URL |
[30] | 杨亚杰, 李慧, 胡清清, 等. 乌骨鸡黑色素的体外抗氧化活性及其对人脐静脉内皮细胞氧化损伤的保护作用[J]. 南昌大学学报:理科版, 2019, 43(1): 59-64. |
Yang YJ, Li H, Hu QQ, et al. Protective effect of melanin from Black-bone sliky fowl on human umbilical vein endothelial cell Injury and antioxidant activity in vitro[J]. J Nanchang Univ:Nat Sci, 2019, 43(1): 59-64. |
[1] | 郑焕, 林冬梅, 刘峻源, 张引莲, 林标声, 林占熺, 李晶. 基于LC-QTOF-MS代谢组学解析牛樟芝子实体和菌丝体中氨基酸代谢差异[J]. 生物技术通报, 2023, 39(5): 254-266. |
[2] | 黄海辰, 李晓敏, 薛帆正, 吴小平, 张君丽, 傅俊生. 一株高产黑色素香灰菌菌株的鉴定、筛选及培养条件的优化[J]. 生物技术通报, 2023, 39(1): 284-294. |
[3] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
[4] | 袁恺, 何伟, 杨云丽, 朱威宇, 彭超, 安泰, 李丽, 周卫强. 灵芝酸生物合成及代谢调控研究进展[J]. 生物技术通报, 2021, 37(8): 46-54. |
[5] | 袁源, 黄海辰, 李琳, 刘国辉, 傅俊生, 吴小平. 石灰对灵芝覆土连作障碍的防控作用及其微生物群落分析[J]. 生物技术通报, 2021, 37(4): 70-84. |
[6] | 薛帆正, 黄海辰, 吴福泉, 李晓敏, 吴小平, 傅俊生. 真菌黑色素研究现状与产业应用[J]. 生物技术通报, 2021, 37(11): 32-41. |
[7] | 魏晶晶, 张浩然, 王志鸽, 王慧春. 羊肚菌菌丝体对土壤酶活性的影响[J]. 生物技术通报, 2020, 36(9): 211-217. |
[8] | 胡楚霄, 雷善钰, 秦艳平, 赵奕锦, 向泉桔. 蒽对3株灵芝菌株漆酶活性及其转录表达水平的影响[J]. 生物技术通报, 2019, 35(9): 112-117. |
[9] | 程杏安, 张淑明, 周晓武, 吴波, 林贤伟, 秦湘静 , 黄素青, 刘展眉, 蒋旭红. 两种天然产物对B16F10细胞增殖及黑色素合成抑制机理研究[J]. 生物技术通报, 2017, 33(8): 199-205. |
[10] | 孟歌, 郑飞, 刘红霞, 司静, 崔宝凯. 锦带花纤孔菌液体培养过程中的抗氧化活性[J]. 生物技术通报, 2016, 32(9): 140-148. |
[11] | 常晨晨,王燕,管珊,孙素荣. 重组骆驼蓬脂转移蛋白与顺铂联合抑制黑色素瘤B16细胞增殖效应的研究[J]. 生物技术通报, 2015, 31(12): 186-192. |
[12] | 孟浩浩, 许瑞霞, 代蓉, 李辉, 李良远, 万鹏程, 石国庆,. 绵羊黑色素合成相关基因的研究进展[J]. 生物技术通报, 2014, 0(8): 34-39. |
[13] | 李晨, 赫荣琳, 武改红, 马立娟, 路福平, 陈树林. 四种测定纤维素酶发酵过程生物量方法的比较[J]. 生物技术通报, 2013, 0(1): 198-202. |
[14] | 高德富;牛乐;孙春阳;张小莉;. 小鼠B16黑色素瘤细胞核迁移蛋白基因的克隆及其在毕赤酵母中的表达[J]. , 2011, 0(08): 140-143. |
[15] | 谢放;陈京津;朱子雄;. 三种提取冬虫夏草菌丝体基因组DNA方法的比较[J]. , 2010, 0(08): 134-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||