生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 80-89.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0122
孔谦1(), 黄文洁1, 吴绍文1, 李坤2, 张名位3, 晏石娟1()
收稿日期:
2022-01-26
出版日期:
2022-11-26
发布日期:
2022-12-01
作者简介:
孔谦,女,硕士,助理研究员,研究方向:色谱技术方法开发及应用;E-mail:基金资助:
KONG Qian1(), HUANG Wen-jie1, WU Shao-wen1, LI Kun2, ZHANG Ming-wei3, YAN Shi-juan1()
Received:
2022-01-26
Published:
2022-11-26
Online:
2022-12-01
摘要:
建立了一种同时定量分析叶黄素、玉米黄素、α-隐黄素、β-隐黄素、ε-胡萝卜素、α-胡萝卜素、β-胡萝卜素、(6R)-δ-胡萝卜素、γ-胡萝卜素、番茄红素10种类胡萝卜素的方法。该方法的色谱条件为:YMC Carotenoid C30(250 mm×4.5 mm,5 μm)色谱柱,柱温(25±1)℃,紫外检测波长450 nm,流速1 mL/min,进样体积10 μL,流动相分别由A1和B1按照不同比例混合制得A相和B相,A相中A1∶B1体积比为9∶1,B相中A1∶B1体积比为1∶9。其中,A1相为97%甲醇-水,含有0.05 mol/L乙酸铵和0.1%(W/V)2,6-二叔丁基-4-甲基苯酚(BHT);B1相为100%甲基叔丁基醚(MTBE),含有0.1%(W/V)BHT,梯度洗脱。在0.5-20 μg/mL范围内,10种类胡萝卜素的质量浓度与峰面积呈良好的线性关系,相关系数(R2)均大于0.995,检出限(LOD,S/N=3)和定量限(LOQ,S/N=10)分别为0.01-1.6 μg/mL、0.2-4.0 μg/mL,且平均回收率在96.29%-104.47%之间,相对标准偏差(RSD)范围为0.03%-1.24%,整个过程可以在40 min内完成。应用此方法对香蕉和玉米样品中的类胡萝卜素含量进行测定,验证此方法在真实农业生物样品中的稳定性、准确性和可靠性。
孔谦, 黄文洁, 吴绍文, 李坤, 张名位, 晏石娟. 一种同时测定十种类胡萝卜素的液相色谱方法的建立[J]. 生物技术通报, 2022, 38(11): 80-89.
KONG Qian, HUANG Wen-jie, WU Shao-wen, LI Kun, ZHANG Ming-wei, YAN Shi-juan. Establishment of HPLC Method for Simultaneous Determination of Ten Carotenoids[J]. Biotechnology Bulletin, 2022, 38(11): 80-89.
时间 Time/min | 流动相A Mobile phase A/% | 流动相B Mobile phase B/% |
---|---|---|
0 | 90 | 10 |
10 | 60 | 40 |
20 | 50 | 50 |
25 | 10 | 90 |
29 | 10 | 90 |
29.5 | 90 | 10 |
40 | 90 | 10 |
表1 液相色谱分析的洗脱梯度
Table 1 Elution program for liquid chromatography
时间 Time/min | 流动相A Mobile phase A/% | 流动相B Mobile phase B/% |
---|---|---|
0 | 90 | 10 |
10 | 60 | 40 |
20 | 50 | 50 |
25 | 10 | 90 |
29 | 10 | 90 |
29.5 | 90 | 10 |
40 | 90 | 10 |
图2 10种类胡萝卜素混合标准品的HPLC色谱图 1:8.25 min,叶黄素;2:9.103 min,玉米黄素;3:11.41 min,α-隐黄素;4:12.66 min,β-隐黄素;5:13.987 min,ε-胡萝卜素;6:15.41 min,α-胡萝卜素;7:17.067 min,β-胡萝卜素;8:23.767 min,(6R)-δ-胡萝卜素;9:25.653 min,γ-胡萝卜素;10:29.223 min,番茄红素
Fig. 2 Chromatograms of 10 carotenoids mixed standards by HPLC 1:8.25 min,lutein;2:9.103 min,zeaxanthin;3:11.41 min,α-cryptoxanthin;4:12.66 min,β-cryptoxanthin;5:13.99 min,ε-carotene;6:15.41 min,α-carotene;7:17.07 min,β-carotene;8,23.77 min,(6R)-δ-carotene;9:25.65 min,γ-carotene;10:29.22 min,lycopene
组分 Compound | 保留时间Ret- ention time/min | 回归方程Calibration curve | 相关系数Correlation coefficients R2 | 线性范围Linear range/(μg·mL-1) | 检出限Limit of detection(LOD)/(μg·mL-1) | 定量限Limit of quantification(LOG)/(μg·mL-1) |
---|---|---|---|---|---|---|
叶黄素Lutein | 8.25 | y=0.5502x+0.0013 | 0.9999 | 0.5-20 | 0.06 | 0.3 |
玉米黄素Zeaxanthin | 9.103 | y=0.3099x-0.0144 | 0.9951 | 0.5-20 | 0.4 | 0.6 |
α-隐黄素α-Cryptoxanthin | 11.41 | y=0.7188x+0.0139 | 0.9999 | 0.5-20 | 0.01 | 0.2 |
β-隐黄素β-Cryptoxanthin | 12.66 | y=0.3981x-0.0215 | 1 | 0.5-20 | 0.2 | 0.4 |
ε-胡萝卜素ε-Carotene | 13.987 | y=0.6449x-0.0102 | 0.9999 | 0.5-20 | 0.02 | 0.2 |
α-胡萝卜素α-Carotene | 15.41 | y=0.4497x-0.0447 | 0.9998 | 0.5-20 | 1 | 2 |
β-胡萝卜素β-Carotene | 17.067 | y=0.6936x+0.0179 | 0.9998 | 0.5-20 | 0.2 | 0.6 |
(6R)-δ-胡萝卜素 (6R)-δ-Carotene | 23.767 | y=0.3149x-0.0695 | 0.9999 | 0.5-20 | 0.25 | 1.4 |
γ-胡萝卜素γ-Carotene | 25.653 | y=0.0561x+0.0006 | 0.9998 | 0.5-20 | 1.6 | 4.0 |
番茄红素Lycopene | 29.223 | y=0.1429x+0.0011 | 0.9999 | 0.5-20 | 0.5 | 1.4 |
表2 10种类胡萝卜素保留时间、线性回归方程、相关系数、线性范围、检出限和定量限
Table 2 Retention time,calibration curves,correlation coefficients,linear ranges,LODs and LOQs of ten carotenoids
组分 Compound | 保留时间Ret- ention time/min | 回归方程Calibration curve | 相关系数Correlation coefficients R2 | 线性范围Linear range/(μg·mL-1) | 检出限Limit of detection(LOD)/(μg·mL-1) | 定量限Limit of quantification(LOG)/(μg·mL-1) |
---|---|---|---|---|---|---|
叶黄素Lutein | 8.25 | y=0.5502x+0.0013 | 0.9999 | 0.5-20 | 0.06 | 0.3 |
玉米黄素Zeaxanthin | 9.103 | y=0.3099x-0.0144 | 0.9951 | 0.5-20 | 0.4 | 0.6 |
α-隐黄素α-Cryptoxanthin | 11.41 | y=0.7188x+0.0139 | 0.9999 | 0.5-20 | 0.01 | 0.2 |
β-隐黄素β-Cryptoxanthin | 12.66 | y=0.3981x-0.0215 | 1 | 0.5-20 | 0.2 | 0.4 |
ε-胡萝卜素ε-Carotene | 13.987 | y=0.6449x-0.0102 | 0.9999 | 0.5-20 | 0.02 | 0.2 |
α-胡萝卜素α-Carotene | 15.41 | y=0.4497x-0.0447 | 0.9998 | 0.5-20 | 1 | 2 |
β-胡萝卜素β-Carotene | 17.067 | y=0.6936x+0.0179 | 0.9998 | 0.5-20 | 0.2 | 0.6 |
(6R)-δ-胡萝卜素 (6R)-δ-Carotene | 23.767 | y=0.3149x-0.0695 | 0.9999 | 0.5-20 | 0.25 | 1.4 |
γ-胡萝卜素γ-Carotene | 25.653 | y=0.0561x+0.0006 | 0.9998 | 0.5-20 | 1.6 | 4.0 |
番茄红素Lycopene | 29.223 | y=0.1429x+0.0011 | 0.9999 | 0.5-20 | 0.5 | 1.4 |
组分Compound | 本底值Background value /(μg·mL-1) | 加标量Standard addition /(μg·mL-1) | 检测值Detection value(μg·mL-1,n=3) | 回收率Recovery(%,n=3) | 相对标准偏差Relative standard deviation(%,n=3) |
---|---|---|---|---|---|
叶黄素Lutein | 2 | 0.5 | 2.5198 | 100.79 | 0.03 |
2 | 3 | 4.9340 | 98.68 | 0.41 | |
2 | 8 | 10.1317 | 101.32 | 0.51 | |
玉米黄素Zeaxanthin | 2 | 0.5 | 2.4072 | 96.29 | 0.10 |
2 | 3 | 5.0634 | 101.27 | 0.40 | |
2 | 8 | 10.5531 | 101.75 | 1.24 | |
α-隐黄素α-Cryptoxanthin | 2 | 0.5 | 2.5367 | 101.47 | 0.07 |
2 | 3 | 4.9766 | 99.53 | 0.44 | |
2 | 8 | 10.1745 | 101.75 | 0.49 | |
β-隐黄素β-Cryptoxanthin | 2 | 0.5 | 2.5228 | 100.91 | 0.09 |
2 | 3 | 4.9333 | 98.67 | 0.51 | |
2 | 8 | 10.002 | 100.02 | 0.40 | |
ε-胡萝卜素ε-Carotene | 2 | 0.5 | 2.6117 | 104.47 | 0.05 |
2 | 3 | 4.9320 | 98.64 | 0.41 | |
2 | 8 | 10.0587 | 100.59 | 0.45 | |
α-胡萝卜素α-Carotene | 2 | 0.5 | 2.5573 | 102.29 | 0.10 |
2 | 3 | 4.8304 | 96.61 | 0.36 | |
2 | 8 | 10.0834 | 100.83 | 0.51 | |
β-胡萝卜素β-Carotene | 2 | 0.5 | 2.5474 | 101.90 | 0.07 |
2 | 3 | 4.9520 | 99.04 | 0.44 | |
2 | 8 | 10.2073 | 102.07 | 0.49 | |
(6R)-δ-胡萝卜素(6R)-δ-Carotene | 2 | 0.5 | 2.4594 | 98.37 | 0.24 |
2 | 3 | 4.9525 | 99.05 | 0.49 | |
2 | 8 | 10.2073 | 101.46 | 0.61 | |
γ-胡萝卜素γ-Carotene | 2 | 0.5 | 2.5811 | 103.24 | 0.22 |
2 | 3 | 5 | 100.00 | 0.57 | |
2 | 8 | 10.1171 | 101.17 | 0.88 | |
番茄红素Lycopene | 2 | 0.5 | 2.4726 | 98.90 | 0.10 |
2 | 3 | 4.9596 | 99.19 | 0.47 | |
2 | 8 | 10.1059 | 101.06 | 0.46 |
表3 10种类胡萝卜素的回收率和精密度
Table 3 Recoveries and accuracies of 10 carotenoids
组分Compound | 本底值Background value /(μg·mL-1) | 加标量Standard addition /(μg·mL-1) | 检测值Detection value(μg·mL-1,n=3) | 回收率Recovery(%,n=3) | 相对标准偏差Relative standard deviation(%,n=3) |
---|---|---|---|---|---|
叶黄素Lutein | 2 | 0.5 | 2.5198 | 100.79 | 0.03 |
2 | 3 | 4.9340 | 98.68 | 0.41 | |
2 | 8 | 10.1317 | 101.32 | 0.51 | |
玉米黄素Zeaxanthin | 2 | 0.5 | 2.4072 | 96.29 | 0.10 |
2 | 3 | 5.0634 | 101.27 | 0.40 | |
2 | 8 | 10.5531 | 101.75 | 1.24 | |
α-隐黄素α-Cryptoxanthin | 2 | 0.5 | 2.5367 | 101.47 | 0.07 |
2 | 3 | 4.9766 | 99.53 | 0.44 | |
2 | 8 | 10.1745 | 101.75 | 0.49 | |
β-隐黄素β-Cryptoxanthin | 2 | 0.5 | 2.5228 | 100.91 | 0.09 |
2 | 3 | 4.9333 | 98.67 | 0.51 | |
2 | 8 | 10.002 | 100.02 | 0.40 | |
ε-胡萝卜素ε-Carotene | 2 | 0.5 | 2.6117 | 104.47 | 0.05 |
2 | 3 | 4.9320 | 98.64 | 0.41 | |
2 | 8 | 10.0587 | 100.59 | 0.45 | |
α-胡萝卜素α-Carotene | 2 | 0.5 | 2.5573 | 102.29 | 0.10 |
2 | 3 | 4.8304 | 96.61 | 0.36 | |
2 | 8 | 10.0834 | 100.83 | 0.51 | |
β-胡萝卜素β-Carotene | 2 | 0.5 | 2.5474 | 101.90 | 0.07 |
2 | 3 | 4.9520 | 99.04 | 0.44 | |
2 | 8 | 10.2073 | 102.07 | 0.49 | |
(6R)-δ-胡萝卜素(6R)-δ-Carotene | 2 | 0.5 | 2.4594 | 98.37 | 0.24 |
2 | 3 | 4.9525 | 99.05 | 0.49 | |
2 | 8 | 10.2073 | 101.46 | 0.61 | |
γ-胡萝卜素γ-Carotene | 2 | 0.5 | 2.5811 | 103.24 | 0.22 |
2 | 3 | 5 | 100.00 | 0.57 | |
2 | 8 | 10.1171 | 101.17 | 0.88 | |
番茄红素Lycopene | 2 | 0.5 | 2.4726 | 98.90 | 0.10 |
2 | 3 | 4.9596 | 99.19 | 0.47 | |
2 | 8 | 10.1059 | 101.06 | 0.46 |
图3 香蕉果肉和玉米籽粒中不同类胡萝卜素的HPLC色谱图 样品测定使用的紫外波长450 nm,A/B/C/D香蕉色谱图;E/F/G/H玉米色谱图。A和E样品提取:不使用乙醇沉淀-使用提取溶剂1-使用皂化;B和F样品提取:不使用乙醇沉淀-使用提取溶剂2-使用皂化;C和G样品提取:使用乙醇沉淀-使用提取溶剂1-使用皂化;D和H样品提取:不使用乙醇沉淀-使用提取溶剂1-不使用皂化
Fig. 3 HPLC chromatogram of carotenoids from banana fruit and maize kernel The UV wavelength of 450 nm,A/ B/C/D for banana chromatogram;E/F/G/H for maize kernel chromatogram. A and E extractions:No ethanol precipitation-solvent 1- no saponification;B and F extractions:no ethanol precipitation-solvent 2-no saponification;C and G extractions:no ethanol precipitation-solvent 1-no saponification;D and H extractions:no ethanol precipitation-solvent 1-no saponification
图4 HPLC方法分析香蕉和甜玉米样品中类胡萝卜素含量 A-B:香蕉果肉样品的HPLC色谱图和类胡萝卜素绝对含量;C-D:玉米籽粒样品的HPLC色谱图和类胡萝卜素绝对含量
Fig. 4 Determination of carotenoids in banana fruit and maize kernel samples using HPLC A-B:Chromatograms and absolute contents of carotenoids in banana fruit samples detected by HPLC. C-D:Chromatograms and absolute contents of carotenoids in maize kernel samples detected by HPLC
[1] | 孙宇杰, 赵祎琳, 王岁楼. 枸杞类胡萝卜素的分离纯化及抗氧化活性研究[J]. 农产品加工, 2020, 11:4-7. |
Sun YJ, Zhao YL, Wang SL. Study on separation, purification and antioxidant activities of crude extraction of carotenodis from gouqi[J]. Farm Prod Process, 2020, 11:4-7. | |
[2] |
Elaheh Z, Safe K, Mehrangiz T, et al. Citrus species:a review of traditional uses, phytochemistry and pharmacology[J]. Current Pharmaceutical design, 2020, 26(1):44-97.
doi: 10.2174/1381612825666191127115601 pmid: 31775593 |
[3] | 包怡红, 罗浩, 何伟伟, 等. 玉米籽粒发芽过程中不同部位类胡萝卜素合成动态及抗氧化活性[J]. 现代食品科技, 2020, 36(6):40-45, 334. |
Bao YH, Luo H, He WW, et al. The synthesis dynamics of carotenoids and antioxidant activity in different parts of maize kernel during germination[J]. Mod Food Sci Technol, 2020, 36(6):40-45, 334. | |
[4] |
Squillaci G, Parrella R, Carbone V, et al. Carotenoids from the extreme halophilic archaeon Haloterrigena turkmenica:identification and antioxidant activity[J]. Extremophiles, 2017, 21(5):933-945.
doi: 10.1007/s00792-017-0954-y pmid: 28803263 |
[5] |
Stahl W, Sies H. Antioxidant activity of carotenoids[J]. Mol Aspects Med, 2003, 24(6):345-351.
pmid: 14585305 |
[6] | 黄开森. 胶红酵母类胡萝卜素产量提升及其对小鼠免疫功能和肠道菌群的影响[D]. 湛江: 广东海洋大学, 2020:51-52. |
Huang KS. Increase of carotenoid output from Rhodotorula mucilaginosa and its impacts on immune functions and intestinal flora of mice[D]. Zhanjiang: Guangdong Ocean University, 2020:51-52. | |
[7] |
Rock CL. Carotenoids:biology and treatment[J]. Pharmacol Ther, 1997, 75(3):185-197.
doi: 10.1016/S0163-7258(97)00054-5 URL |
[8] | 王倩楠, 曹苏珊, 韩迎亚, 等. 微藻类胡萝卜素生物合成代谢途径的研究进展[J]. 食品工业科技, 2020, 41(9):348-356. |
Wang QN, Cao SS, Han YY, et al. Research progress of biosynthetic metabolic pathway of carotene in microalgae[J]. Sci Technol Food Ind, 2020, 41(9):348-356. | |
[9] | 羌宇. 类胡萝卜素体外抗氧化、抗肿瘤活性及其构效关系初步研究[D]. 南昌: 南昌大学, 2020:47-48. |
Qiang Y. Study on antioxidant and antitumor activities of carotenoids in vitro and their structure-activity relationship[D]. Nanchang: Nanchang University, 2020:47-48. | |
[10] |
Rao AV, Rao LG. Carotenoids and human health[J]. Pharmacol Res, 2007, 55(3):207-216.
pmid: 17349800 |
[11] | 姜立, 朱长甫, 于婷婷, 等. 类胡萝卜素的研究进展[J]. 生物化工, 2020, 6(6):136-139. |
Jiang L, Zhu CF, Yu TT, et al. Research progress of carotenoids[J]. Biol Chem Eng, 2020, 6(6):136-139. | |
[12] |
Mercadante AZ, Rodrigues DB, Petry FC, et al. Carotenoid esters in foods - A review and practical directions on analysis and occurrence[J]. Food Res Int, 2017, 99(Pt 2):830-850.
doi: S0963-9969(16)30622-6 pmid: 28847421 |
[13] |
Stinco CM, Benítez-González AM, Meléndez-Martínez AJ, et al. Simultaneous determination of dietary isoprenoids(carotenoids, chlorophylls and tocopherols)in human faeces by Rapid Resolution Liquid Chromatography[J]. J Chromatogr A, 2019, 1583:63-72.
doi: S0021-9673(18)31392-X pmid: 30442473 |
[14] |
Emenhiser C, Simunovic N, Sander LC, et al. Separation of geometrical carotenoid isomers in biological extracts using a polymeric C30 column in reversed-phase liquid chromatography[J]. J Agric Food Chem, 1996, 44(12):3887-3893.
doi: 10.1021/jf960104m URL |
[15] |
Emenhiser C, Sander LC, Schwartz SJ. Capability of a polymeric C30 stationary phase to resolve cis-trans carotenoid isomers in reversed-phase liquid chromatography[J]. J Chromatogr A, 1995, 707(2):205-216.
doi: 10.1016/0021-9673(95)00336-L URL |
[16] | Heng Z, Sheng O, Huang WJ, et al. Integrated proteomic and metabolomic analysis suggests high rates of glycolysis are likely required to support high carotenoid accumulation in banana pulp[J]. Food Chem, 2019, 297:125016. |
[17] |
Liu HL, Chen BH, Kao TH, et al. Carotenoids composition in Scutellaria barbata D. Don as detected by high performance liquid chromatography-diode array detection-mass spectrometry-atmospheric pressure chemical ionization[J]. J Funct Foods, 2014, 8:100-110.
doi: 10.1016/j.jff.2014.03.008 URL |
[18] |
Oliver J, Palou A. Chromatographic determination of carotenoids in foods[J]. J Chromatogr A, 2000, 881(1/2):543-555.
doi: 10.1016/S0021-9673(00)00329-0 URL |
[19] | 刘长付. 番茄中类胡萝卜素的相关研究[D]. 北京: 北京林业大学, 2013. |
Liu CF. Related research on carotenoids of tomato[D]. Beijing: Beijing Forestry University, 2013. | |
[20] | 岳慧英, 赵春贵, 杨素萍. 固氮红细菌(Rhodobacter azotoformans)423 nm特征吸收峰成因与定位[J]. 微生物学通报, 2021, 48(5):1538-1549. |
Yue HY, Zhao CG, Yang SP. Formation origination of characteristic absorption peaks at 423 nm in Rhodobacter azotoformans[J]. Microbiol China, 2021, 48(5):1538-1549. | |
[21] | 李琪, 张慧, 安超, 等. 酸浆宿萼中苦瓜甙的提取分离纯化及应用研究[J]. 中国食品添加剂, 2021, 32(7):58-63. |
Li Q, Zhang H, An C, et al. Study on extraction, purification and application of charantin from calyxes of Physalis[J]. China Food Addit, 2021, 32(7):58-63. | |
[22] | 耿树香, 宁德鲁, 杨明佳, 等. 云南11种油料作物油脂主要功能性成分评价[J]. 中国油脂, 2021, 46(1):108-111. |
Geng SX, Ning DL, Yang MJ, et al. Evaluation of the main functional components in oils from eleven oil crops in Yunnan[J]. China Oils Fats, 2021, 46(1):108-111. | |
[23] | 马帅, 王若凡, 陈霖, 等. 不同产地的两种橙色大白菜类胡萝卜素积累差异分析[J]. 西北农业学报, 2021, 30(3):395-405. |
Ma S, Wang RF, Chen L, et al. Analysis of carotenoid accumulation differences between two kinds of Chinese cabbage with orange head in different production areas[J]. Acta Agric Boreali Occidentalis Sin, 2021, 30(3):395-405. | |
[24] | 吴英详, 黄成能, 龚江美, 等. 基于HPLC法的‘迷你红柚’果实中类胡萝卜素组成分析[J]. 热带作物学报, 2021, 42(2):546-552. |
Wu YX, Huang CN, Gong JM, et al. Analysis of carotenoid components in ‘minihongyou’[Citrus maxima(burm. )merr. ]fruit by HPLC[J]. Chin J Trop Crops, 2021, 42(2):546-552. | |
[25] | 邓永平, 车鑫, 艾瑞波, 等. 好食脉孢霉发酵产类胡萝卜素的鉴定、抗氧化性及稳定性研究[J]. 食品与发酵工业, 2021, 47(4):15-20. |
Deng YP, Che X, Ai RB, et al. Identification, antioxidant and stability of carotenoids from a GRAS fungus Neurospora sitophila[J]. Food Ferment Ind, 2021, 47(4):15-20. | |
[26] |
Murillo E. Far UV peaks contribute for identification of carotenoids E/Z isomers[J]. J Food Compos Anal, 2018, 67:159-162.
doi: 10.1016/j.jfca.2017.12.037 URL |
[27] |
Bicanic D, Dimitrovski D, Luterotti S, et al. Correlation of trans-lycopene measurements by the HPLC method with the optothermal and photoacoustic signals and the color readings of fresh tomato homogenates[J]. Food Biophys, 2010, 5(1):24-33.
pmid: 20401182 |
[28] | Craft NE. Carotenoid reversed-phase high-performance liquid chromatography methods:reference compendium[J]. Methods Enzymol, 1992, 213:185-205. |
[29] |
Shi QY, Wang HY, Du C, et al. Tentative identification of torulene cis/trans geometrical isomers isolated from Sporidiobolus pararoseus by high-performance liquid chromatography-diode array detection-mass spectrometry and preparation by column chromatography[J]. Anal Sci, 2013, 29(10):997-1002.
doi: 10.2116/analsci.29.997 URL |
[30] |
Wilson WB, Wise SA, Sander LC. Development of a reversed-phase liquid chromatography and fluorescence method with multichannel selective wavelength detection for the determination of benzo[a]pyrene and six of its isomers[J]. Chromatographia, 2019, 82(1):499-508.
doi: 10.1007/s10337-018-3621-2 URL |
[31] |
Dugo P, Herrero M, Giuffrida D, et al. Analysis of native carotenoid composition in orange juice using C30 columns in tandem[J]. J Sep Sci, 2008, 31(12):2151-2160.
doi: 10.1002/jssc.200800073 pmid: 18615834 |
[32] |
Lin CH, Chen BH. Determination of carotenoids in tomato juice by liquid chromatography[J]. J Chromatogr A, 2003, 1012(1):103-109.
pmid: 14509347 |
[33] |
Facundo HVDV, Gurak PD, Mercadante AZ, et al. Storage at low temperature differentially affects the colour and carotenoid composition of two cultivars of banana[J]. Food Chem, 2015, 170:102-109.
doi: 10.1016/j.foodchem.2014.08.069 pmid: 25306323 |
[34] |
Englberger L, Wills RBH, Blades B, et al. Carotenoid content and flesh color of selected banana cultivars growing in Australia[J]. Food Nutr Bull, 2006, 27(4):281-291.
pmid: 17209469 |
[35] | 綦丹华, 卢怀宝, 姚双, 等. 超临界流体萃取-反相高效液相色谱法测定玉米蛋白粉中叶黄质和玉米黄质的含量[J]. 天津师范大学学报:自然科学版, 2007, 27(2):1-3, 6. |
Qi DH, Lu HB, Yao S, et al. Determination of the lutein and Zeaxanthin in corn gluten meal extract by SFE-RP-HPLC[J]. J Tianjin Norm Univ Nat Sci Ed, 2007, 27(2):1-3, 6. | |
[36] |
Mamatha BS, Arunkumar R, Baskaran V. Effect of processing on major carotenoid levels in corn(Zea mays)and selected vegetables:bioavailability of lutein and Zeaxanthin from processed corn in mice[J]. Food Bioprocess Technol, 2012, 5(4):1355-1363.
doi: 10.1007/s11947-010-0403-8 URL |
[1] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[2] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[3] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[4] | 张志霞, 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊. 冰冷杆菌PG-2的基因组测序及生物信息学分析[J]. 生物技术通报, 2023, 39(3): 290-300. |
[5] | 周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127. |
[6] | 田清尹, 岳远征, 申慧敏, 潘多, 杨秀莲, 王良桂. 植物观赏器官中类胡萝卜素代谢调控的研究进展[J]. 生物技术通报, 2022, 38(12): 35-46. |
[7] | 蔡国磊, 陆小凯, 娄水珠, 杨海英, 杜刚. 芽孢杆菌LM基于全基因组的分类鉴定及抑菌原理的研究[J]. 生物技术通报, 2021, 37(8): 176-185. |
[8] | 王悦, 欧阳丹, 汤伟, 刘仕博, 顾燕, 何增国. 六株红酵母抗氧化活性的研究[J]. 生物技术通报, 2020, 36(10): 156-164. |
[9] | 叶洲辰, 吴友根, 于靖, 张军锋, 杨东梅, 胡新文. 不同产地油茶籽油提取物的抗氧化活性比较分析及其营养评价[J]. 生物技术通报, 2019, 35(10): 80-88. |
[10] | 赵杰, 岳华, 苟学磊, 周金燕, 谭红. 伊枯草菌素A发酵过程中游离氨基酸的HPLC分析[J]. 生物技术通报, 2018, 34(8): 151-158. |
[11] | 葛欣, 崔天琦, 李兴旺, 谢录翰, 辛琪. 接合菌蓝光受体蛋白研究进展[J]. 生物技术通报, 2018, 34(4): 43-50. |
[12] | 刘建兵, 戚梦, 杜苑如, 傅俊生, 胡开辉. 拆分网络分析22株蛹虫草亲缘关系及高产虫草素菌株初筛[J]. 生物技术通报, 2018, 34(4): 133-138. |
[13] | 乔玉玲, 黄铮, 秦海艳, 宋兰兰, 陈继军, 安晨, 叶星, 毛晓燕. 抗CD52单克隆抗体HPLC-肽图分析方法的建立[J]. 生物技术通报, 2018, 34(11): 216-222. |
[14] | 张超, 刘玉成, 王艺光, 付建新, 赵宏波. 桂花类胡萝卜素异构酶基因的克隆及表达分析[J]. 生物技术通报, 2017, 33(6): 89-96. |
[15] | 邓昌哲, 安飞飞, 李开绵, 陈松笔. 外源ABA及其抑制剂钨酸钠对木薯块根类胡萝卜素相关基因和蛋白的影响[J]. 生物技术通报, 2017, 33(11): 76-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||