生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 160-172.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1253
收稿日期:
2022-10-11
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
李映志,男,博士,教授,研究方向:热带园艺植物栽培与育种;E-mail: liyz@gdou.edu.cn作者简介:
魏茜雅,女,硕士研究生,研究方向:热带园艺作物栽培生理;E-mail: 1534536534@qq.com
基金资助:
WEI Xi-ya(), QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi()
Received:
2022-10-11
Published:
2023-07-26
Online:
2023-08-17
摘要:
褪黑素具有增强植株耐盐性的作用,但其通过种子引发处理提高朝天椒植株耐盐性的效果和作用机制还鲜见报道。为探讨种子引发剂褪黑素(melatonin, MT)对盐胁迫下辣椒幼苗生长及生理特性的影响机制,以‘茂蔬360’为材料,研究褪黑素引发种子对盐胁迫下辣椒幼苗生长、光合特性、抗氧化代谢及渗透调节等的影响。结果表明,褪黑素种子引发处理显著缓解了盐胁迫对朝天椒植株生长的不利影响,与未引发处理相比,经不同浓度褪黑素引发种子后,显著提高了盐胁迫下辣椒幼苗生长,具体表现为植株根长、地上高度、茎鲜重、叶片鲜重、根鲜重、Fv'/Fm'、Qp、NPQ、Fo、Fv/Fm值和叶绿素含量提高。生理分析表明,经不同浓度褪黑素引发处理后,显著降低了盐胁迫下朝天椒植株叶片的丙二醛、过氧化氢和超氧阴离子含量;叶片可溶性糖、可溶性蛋白、脯氨酸、AsA和DHA含量显著提高;叶片POD、SOD、APX和GR活性显著增强。此外,经褪黑素引发处理后,显著提高了盐胁迫下叶、茎、根中K+含量,降低了Na+含量和Na+/ K+值。以上结果表明,100 μmol/L褪黑素种子引发处理效果最好,明显提高了朝天椒对土壤盐分的耐性,减少了植株对Na+的吸收,缓解了盐胁迫对朝天椒植株的伤害。
魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172.
WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum[J]. Biotechnology Bulletin, 2023, 39(7): 160-172.
图1 不同浓度褪黑素引发对盐胁迫下朝天椒根长(A)、地上高度(B)和根冠比(C)的影响 上述数据为平均值±标准差(n=3);不同字母表示差异显著(P<0.05)。下同
Fig. 1 Effects of seed priming with melatonin(MT)at different concentration on the root length(A), above ground height(B)and root shoot ratio(C)of C. annuum under salt stress The above data are mean ± standard deviation(n=3). Different letters represent significant differences(P<0.05). The same below
图2 不同浓度褪黑素引发对盐胁迫下朝天椒鲜重(A)、叶片鲜重(B)、茎鲜重(C)和根鲜重(D)的影响
Fig. 2 Effects of melatonin at different concentration on the plant fresh weight(A), leaf fresh weight(B), stem fresh weight(C)and root fresh weight(D)of C. annuum under salt stress
图3 不同浓度褪黑素引发对盐胁迫下朝天椒干重(A)、叶片干重(B)、茎干重(C)和根干重(D)的影响
Fig. 3 Effects of melatonin at different concentration on the plant dry weight(A), leaf dry weight(B), stem dry weight(C)and root dry weight(D)of C. annuum under salt stress
图4 不同浓度褪黑素引发对盐胁迫下朝天椒叶片叶绿素荧光参数Fv'/Fm'(A)、Qp(B)、NPQ(C)、Fo(D)、Fv/F0(E)、Fv/Fm(F)和SPAD值(G)影响
Fig. 4 Chlorophyll fluorescence parameter Fv'/Fm'(A), Qp(B), NPQ(C), Fo(D), Fv/F0(E), Fv/Fm(F)and SPAD value(G)in the leaves of C. annuum affected by melatonin at different concentration
图5 不同浓度褪黑素引发对盐胁迫下朝天椒叶片MDA(A)、过氧化氢(B)和超氧阴离子含量(C)的影响
Fig. 5 Effects of melatonin at different concentration on the contents of MDA(A), hydrogen peroxide(B)and superoxide anion(C)in the leaves ofC. annuum under salt stress
图6 不同浓度褪黑素引发对盐胁迫下朝天椒叶片可溶性糖(A)、可溶性蛋白(B)和脯氨酸含量(C)的影响
Fig. 6 Effects of melatonin at different concentrations on the contents of soluble sugar(A), soluble protein(B)and proline(C)in the leaves of C. annuum under salt stress
图7 不同浓度褪黑素引发对盐胁迫下朝天椒叶片POD(A)、CAT(B)和SOD(C)活性的影响
Fig. 7 Effects of melatonin at different concentrations on the POD(A), CAT(B)and SOD(C)activities in the leaves of C. annuum under salt stress
图8 不同浓度褪黑素引发对盐胁迫下朝天椒叶片APX(A)和GR(B)活性的影响
Fig. 8 Effects of melatonin at different concentration on the APX(A)and GR(B)activities in the leaves of C. annuum under salt stress
图9 不同浓度褪黑素引发对盐胁迫下朝天椒叶片AsA(A)、DHA(B)和AsA/DHA含量(C)的影响
Fig. 9 Effects of melatonin different concentrations on the AsA(A), DHA(B)and AsA/DHA contents(C)in the leaves of C. annuum under salt stress
图10 不同浓度褪黑素引发对盐胁迫下朝天椒叶、茎和根系的Na+(A)、K+(B)和Na +/K+(C)含量和比例的影响
Fig. 10 Melatonin at different concentrations affecting the contents and proportions of Na+(A), K+(B)and Na+/K+(C)in the leaves, stems and roots of C. annuum under salt stress
[1] | 魏佳, Richard John Tiika, 段慧荣, 等. NaCl胁迫下黑果枸杞幼苗生长及Na+、K+吸收与分配的变化[J]. 西北农业学报, 2022, 31(2): 193-201. |
Wei J, Tiika R, Duan HR, et al. Seedling growth of Lycium ruthenicum Murr and change of Na+ and K+ absorption and distribution under NaCl stress[J]. Acta Agric Boreali Occidentalis Sin, 2022, 31(2): 193-201. | |
[2] |
Shrivastava P, et al. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi J Biol Sci, 2015, 22(2): 123-131.
doi: 10.1016/j.sjbs.2014.12.001 pmid: 25737642 |
[3] | 斯日古楞, 王宏鹏. NaHCO3胁迫对饲用燕麦地上部分K+、Na+含量的影响[J]. 东北农业科学, 2022, 47(6):94-97. |
Siriguleng, WANG HP. Na+ and K+ ion accumulation in forage oat aboveground part under NaHCO3 stress[J]. J Northeast Agric Sci, 2022, 47(6):94-97. | |
[4] | 郭家鑫, 鲁晓宇, 陶一凡, 等. 盐碱胁迫对棉花生长和养分吸收的影响[J]. 干旱地区农业研究, 2022, 40(4): 23-32, 59. |
Guo JX, Lu XY, Tao YF, et al. Effects of saline and alkaline stresses ongrowth and nutrient uptake of cotton[J]. Agric Res Arid Areas, 2022, 40(4): 23-32, 59. | |
[5] | 曾长立, 陈禅友. 外源水杨酸降低辣椒幼苗盐害的生理效应[J]. 东北农业大学学报, 2010, 41(11): 32-37. |
Zeng CL, Chen YC. Physiological effect of exogenous salicylic acid on decreasing salt damage to pepper seedlings[J]. J Northeast Agric Univ, 2010, 41(11): 32-37. | |
[6] | 张志刚, 尚庆茂. 低温、弱光及盐胁迫下辣椒叶片的光合特性[J]. 中国农业科学, 2010, 43(1): 123-131. |
Zhang ZG, Shang QM. Photosynthetic characteristics of pepper leaves under low temperature, weak light and salt stress[J]. Sci Agric Sin, 2010, 43(1): 123-131. | |
[7] | 胡晋. 种子引发及其效应[J]. 种子, 1998, 17(2): 33-35. |
Hu J. Seed priming and its effects on seeds[J]. Seed, 1998, 17(2): 33-35. | |
[8] | 张卫华, 郝丽珍, 胡宁宝, 等. 种子引发及其效应[J]. 种子, 2004(6):49-51. |
Zhang WH, Hao LZ, Hu NB, et al. Seed priming and its effects on seeds[J]. Seed, 2004(6):49-51. | |
[9] | 阮松林, 薛庆中. 植物的种子引发[J]. 植物生理学通讯, 2002, 38(2): 198-202. |
Ruan SL, Xue QZ. Seed priming of plant[J]. Plant Physiol Commun, 2002, 38(2): 198-202. | |
[10] |
Gao YP, Young L, Bonham-Smith P, et al. Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions[J]. Plant Mol Biol, 1999, 40(4): 635-644.
pmid: 10480387 |
[11] |
Ibrahim EA. Seed priming to alleviate salinity stress in germinating seeds[J]. J Plant Physiol, 2016, 192: 38-46.
doi: 10.1016/j.jplph.2015.12.011 URL |
[12] |
邹学校, 胡博文, 熊程, 等. 中国辣椒育种60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2099-2118.
doi: 10.16420/j.issn.0513-353x.2022-0677 |
Zou XX, Hu BW, Xiong C, et al. Review and prospects of pepper breeding for the past 60 years in China[J]. Acta Hortic Sin, 2022, 49(10): 2099-2118.
doi: 10.16420/j.issn.0513-353x.2022-0677 |
|
[13] |
李平平, 张祥, 刘雨婷, 等. 辣椒63份种质果皮颜色与呈色物质的关系[J]. 园艺学报, 2022, 49(7): 1589-1601.
doi: 10.16420/j.issn.0513-353x.2021-0449 |
Li PP, Zhang X, Liu YT, et al. Studies on the relationship between pigment composition and fruit coloration of 63 peppers[J]. Acta Hortic Sin, 2022, 49(7): 1589-1601.
doi: 10.16420/j.issn.0513-353x.2021-0449 |
|
[14] | 赵玥, 辛霞, 王宗礼, 等. 种子引发机理研究进展及牧草种子引发研究展望[J]. 中国草地学报, 2012, 34(3): 102-108. |
Zhao Y, Xin X, Wang ZL, et al. Research progress and prospects in the mechanism of seed priming[J]. Chin J Grassland, 2012, 34(3): 102-108. | |
[15] |
Yan HF, Mao PS. Comparative time-course physiological responses and proteomic analysis of melatonin priming on promoting germination in aged oat(Avena sativa L.) seeds[J]. Int J Mol Sci, 2021, 22(2): 811.
doi: 10.3390/ijms22020811 URL |
[16] | 张娜, 蒋庆, 李殿波, 等. 外源施加褪黑素对NaCl胁迫下狼尾草种子萌发及相关生理指标的影响[J]. 中国农业大学学报, 2014, 19(4): 54-60. |
Zhang N, Jiang Q, Li DB, et al. Effect of exogenous melatonin on germination of Pennisetum alopecuroides under NaCl stress[J]. J China Agric Univ, 2014, 19(4): 54-60. | |
[17] | 毛培胜, 张晔, 黄琪, 等. 褪黑素引发对敖汉苜蓿种子碱性盐胁迫的缓解作用[J]. 中国草地学报, 2020, 42(3): 30-36. |
Mao PS, Zhang Y, Huang Q, et al. Physiological responses of Aohan alfalfa seeds to melatonin priming under alkaline salt stress[J]. Chin J Grassland, 2020, 42(3): 30-36. | |
[18] |
Posmyk MM, Kuran HN, Marciniak K, et al. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations[J]. J Pineal Res, 2008, 45(1): 24-31.
doi: 10.1111/j.1600-079X.2007.00552.x pmid: 18205729 |
[19] | 董秋丽, 王聪聪, 郑川, 等. 褪黑素引发对达乌里胡枝子种子干旱萌发的影响[J]. 中国草地学报, 2022, 44(7): 114-120. |
Dong QL, Wang CC, Zheng C, et al. Effects of melatonin priming on germination of lespedezad avurica seeds under drought stress[J]. Chin J Grassland, 2022, 44(7): 114-120. | |
[20] |
Kołodziejczyk I, Dzitko K, Szewczyk R, et al. Exogenous melatonin improves corn(Zea mays L.) embryo proteome in seeds subjected to chilling stress[J]. J Plant Physiol, 2016, 193: 47-56.
doi: 10.1016/j.jplph.2016.01.012 URL |
[21] |
刘金海, 蒋金娟, 罗富成, 等. 外源二聚丙三醇对非洲狗尾草种子萌发及幼苗生长的影响[J]. 草地学报, 2022, 30(4): 950-956.
doi: 10.11733/j.issn.1007-0435.2022.04.021 |
Liu JH, Jiang JJ, Luo FC, et al. Effects of exogenous diglycerol treatment on seed germination and seedling growth of Setaria sphacelata ‘narok’[J]. Acta Agrestia Sin, 2022, 30(4): 950-956. | |
[22] | 刘家尧, 刘新. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2010. |
Liu JY, Liu X. Experimental Course of Plant Physiology[M]. Beijing: Higher Education Press, 2010. | |
[23] | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5): 867-880. |
[24] | 王俊力, 王岩, 赵天宏, 等. 臭氧胁迫对大豆叶片抗坏血酸-谷胱甘肽循环的影响[J]. 生态学报, 2011, 31(8): 2068-2075. |
Wang JL, Wang Y, Zhao TH, et al. Effects of ozone on AsA-GSH cycle in soybean leaves[J]. Acta Ecol Sin, 2011, 31(8): 2068-2075. | |
[25] | 王旭明, 赵夏夏, 黄露莎, 等. 盐胁迫下4个不同耐盐基因型水稻Na+、K+积累效应[J]. 热带作物学报, 2018, 39(11): 2140-2146. |
Wang XM, Zhao XX, Huang LS, et al. The Na+ and K+ accumulative effect of four different salt tolerance genotypes in rice under salt stress[J]. Chin J Trop Crops, 2018, 39(11): 2140-2146. | |
[26] |
刘德帅, 姚磊, 徐伟荣, 等. 褪黑素参与植物抗逆功能研究进展[J]. 植物学报, 2022, 57(1): 111-126.
doi: 10.11983/CBB21146 |
Liu DS, Yao L, Xu WR, et al. Research progress of melatonin in plant stress resistance[J]. Chin Bull Bot, 2022, 57(1): 111-126. | |
[27] |
Zhang Y, et al. Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways[J]. Ind Crops Prod, 2021, 169: 113671.
doi: 10.1016/j.indcrop.2021.113671 URL |
[28] |
Heshmati S, et al. Role of melatonin seed priming on antioxidant enzymes and biochemical responses of Carthamus tinctorius L. under drought stress conditions[J]. Plant Stress, 2021, 2: 100023.
doi: 10.1016/j.stress.2021.100023 URL |
[29] |
Liang D, et al. Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress[J]. Sci Hortic, 2019, 246: 34-43.
doi: 10.1016/j.scienta.2018.10.058 URL |
[30] |
Sezer İ, et al. Role of melatonin in improving leaf mineral content and growth of sweet corn seedlings under different soil salinity levels[J]. Sci Hortic, 2021, 288: 110376.
doi: 10.1016/j.scienta.2021.110376 URL |
[31] | 钱玥, 饶良懿. 盐碱胁迫对枸杞幼苗生长与叶绿素荧光特性的影响[J]. 森林与环境学报, 2022, 42(3): 271-278. |
Qian Y, Rao LY. Effects of saline-alkali stress on the growth and chlorophyll fluorescence characteristics of Lycium barbarum seedlings[J]. J For Environ, 2022, 42(3): 271-278. | |
[32] |
南思睿, 罗永忠, 于思敏, 等. 干旱胁迫后复水对新疆大叶苜蓿幼苗光合和叶绿素荧光的影响[J]. 草地学报, 2022, 30(5): 1141-1149.
doi: 10.11733/j.issn.1007-0435.2022.05.014 |
Nan SR, Luo YZ, Yu SM, et al. Effects of rewatering after drought stress on photosynthesis and chlorophyll fluorescence of Medicago sativa cv. xingjiangdaye seedlings[J]. Acta Agrestia Sin, 2022, 30(5): 1141-1149. | |
[33] |
Liu K, Jing TT, Wang YN, et al. Melatonin delays leaf senescence and improves cucumber yield by modulating chlorophyll degradation and photoinhibition of PSII and PSI[J]. Environ Exp Bot, 2022, 200: 104915.
doi: 10.1016/j.envexpbot.2022.104915 URL |
[34] |
Shah AA, Ahmed S, Ali A, et al. 2-Hydroxymelatonin mitigates cadmium stress in Cucumis sativus seedlings: Modulation of antioxidant enzymes and polyamines[J]. Chemosphere, 2020, 243: 125308.
doi: 10.1016/j.chemosphere.2019.125308 URL |
[35] | 张功臣, 秦玉红, 王波, 等. 生物炭对盐胁迫下黄瓜叶片抗氧化酶活性和矿质元素累积的影响[J]. 土壤通报, 2022, 53(4): 931-938. |
Zhang GC, Qin YH, Wang B, et al. Effects of biochar on the antioxidant enzyme activities and mineral element contents in cucumber leaves under salt stress[J]. Chin J Soil Sci, 2022, 53(4): 931-938. | |
[36] |
Li RQ, Wu LQ, Shao YF, et al. Melatonin alleviates copper stress to promote rice seed germination and seedling growth via crosstalk among various defensive response pathways[J]. Plant Physiol Biochem, 2022, 179: 65-77.
doi: 10.1016/j.plaphy.2022.03.016 URL |
[37] |
Fu JJ, et al. Melatonin-induced cold and drought tolerance is regulated by brassinosteroids and hydrogen peroxide signaling in perennial ryegrass[J]. Environ Exp Bot, 2022, 196: 104815.
doi: 10.1016/j.envexpbot.2022.104815 URL |
[38] |
Islam ATMT, et al. Effect of salicylic acid seed priming on morpho-physiological responses and yield of baby corn under salt stress[J]. Sci Hortic, 2022, 304: 111304.
doi: 10.1016/j.scienta.2022.111304 URL |
[39] | 付媛媛, 江晓慧, 申孝军, 等. 盐胁迫下棉花幼苗叶片K+、Na+含量与光合参数的关系[J]. 生态学杂志, 2021, 40(6): 1716-1722. |
Fu YY, Jiang XH, Shen XJ, et al. The relationship between foliar K+ and Na+ concentrations and photosynthetic parameters of cotton seedlings under salt stress[J]. Chin J Ecol, 2021, 40(6): 1716-1722. | |
[40] |
Yan FY, et al. Melatonin enhances Na+/K+ homeostasis in rice seedlings under salt stress through increasing the root H+-pump activity and Na+/K+ transporters sensitivity to ROS/RNS[J]. Environ Exp Bot, 2021, 182: 104328.
doi: 10.1016/j.envexpbot.2020.104328 URL |
[1] | 康凌云, 韩露露, 韩德平, 陈建胜, 甘瀚凌, 邢凯, 马友记, 崔凯. 褪黑素缓解空肠黏膜上皮细胞氧化损伤的效果研究[J]. 生物技术通报, 2023, 39(9): 291-299. |
[2] | 张岳一, 兰社益, 裴海闰, 封棣. 多菌种联用发酵燕麦麸皮工艺优化及发用功效评价[J]. 生物技术通报, 2023, 39(9): 58-70. |
[3] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[4] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[5] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[6] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[7] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[8] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[9] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[10] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
[11] | 汪明滔, 刘建伟, 赵春钊. 植物调控盐胁迫下细胞壁完整性的分子机制[J]. 生物技术通报, 2023, 39(11): 18-27. |
[12] | 赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190. |
[13] | 张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均, 赵军胜. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析[J]. 生物技术通报, 2023, 39(11): 308-317. |
[14] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[15] | 朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||