| [1] |
邓灵, 赵康, 夏开, 等. 小龙虾(Procambarus clarkia)加工前后优势腐败菌的分离与鉴定[J]. 食品工业科技, 2020, 41(18): 100-104.
|
|
Deng L, Zhao K, Xia K, et al. Isolation and identification of specific spoilage organisms in crayfish(Procambarus clarkii)before and after processing[J]. Sci Technol Food Ind, 2020, 41(18): 100-104.
|
| [2] |
Arfatahery N, Davoodabadi A, Abedimohtasab T. Characterization of toxin genes and antimicrobial susceptibility of Staphylococcus aureus isolates in fishery products in Iran[J]. Sci Rep, 2016, 6: 34216.
doi: 10.1038/srep34216
pmid: 27694813
|
| [3] |
Shandilya S, Kumar S, Kumar JN, et al. Interplay of gut microbiota and oxidative stress: perspective on neurodegeneration and neuroprotection[J]. J Adv Res, 2021, 38: 223-244.
|
| [4] |
Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants[J]. Oxid Med Cell Longev, 2013, 2013: 956792.
|
| [5] |
Yang HT, Yang MC, Sun JJ, et al. Catalase eliminates reactive oxygen species and influences the intestinal microbiota of shrimp[J]. Fish Shellfish Immunol, 2015, 47(1): 63-73.
|
| [6] |
De Deken X, Corvilain B, Dumont JE, et al. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling[J]. Antioxid Redox Signal, 2014, 20(17): 2776-2793.
|
| [7] |
Hazime H, Ducasa GM, Santander AM, et al. Intestinal epithelial inactivity of dual oxidase 2 results in microbiome-mediated metabolic syndrome[J]. Cell Mol Gastroenterol Hepatol, 2023, 16(4): 557-572.
doi: 10.1016/j.jcmgh.2023.06.009
pmid: 37369278
|
| [8] |
Sommer F, Bäckhed F. The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium[J]. Mucosal Immunol, 2015, 8(2): 372-379.
doi: 10.1038/mi.2014.74
pmid: 25160818
|
| [9] |
Lee KA, Kim B, You H, et al. Uracil-induced signaling pathways for DUOX-dependent gut immunity[J]. Fly, 2015, 9(3): 115-120.
|
| [10] |
Yang QH, Sun ZQ, Zhou YL, et al. SpATF2 participates in maintaining the homeostasis of hemolymph microbiota by regulating dual oxidase expression in mud crab[J]. Fish Shellfish Immunol, 2020, 104: 252-261.
|
| [11] |
Liu ZG, Zhang HY, Lemaitre B, et al. Duox activation in Drosophila Malpighian tubules stimulates intestinal epithelial renewal through a countercurrent flow[J]. Cell Rep, 2024, 43(4): 114109.
|
| [12] |
Dias RO, Cardoso C, Pimentel AC, et al. The roles of mucus-forming mucins, peritrophins and peritrophins with mucin domains in the insect midgut[J]. Insect Mol Biol, 2018, 27(1): 46-60.
doi: 10.1111/imb.12340
pmid: 28833767
|
| [13] |
Zeng T, Jaffar S, Xu YJ, et al. The intestinal immune defense system in insects[J]. Int J Mol Sci, 2022, 23(23): 15132.
|
| [14] |
Zhou YL, Wang LZ, Gu WB, et al. Identification and functional analysis of immune deficiency(IMD)from Scylla paramamosain: the first evidence of IMD signaling pathway involved in immune defense against bacterial infection in crab species[J]. Fish Shellfish Immunol, 2018, 81: 150-160.
|
| [15] |
Li HY, Li QY, Wang S, et al. Stimulator of interferon genes defends against bacterial infection via IKKβ-mediated Relish activation in shrimp[J]. Front Immunol, 2022, 13: 977327.
|
| [16] |
Ha EM, Lee KA, Seo YY, et al. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut[J]. Nat Immunol, 2009, 10(9): 949-957.
|
| [17] |
Donkó Á, Péterfi Z, Sum A, et al. Dual oxidases[J]. Phil Trans R Soc B, 2005, 360(1464): 2301-2308.
|
| [18] |
Sun ZQ, Hao SF, Gong Y, et al. Dual oxidases participate in the regulation of hemolymph microbiota homeostasis in mud crab Scylla paramamosain[J]. Dev Comp Immunol, 2018, 89: 111-121.
|
| [19] |
Inada M, Kihara K, Kono T, et al. Deciphering of the Dual oxidase(Nox family)gene from kuruma shrimp, Marsupenaeus japonicus: full-length cDNA cloning and characterization[J]. Fish Shellfish Immunol, 2013, 34(2): 471-485.
|
| [20] |
Schweikl H, Godula M, Petzel C, et al. Critical role of superoxide anions and hydroxyl radicals in HEMA-induced apoptosis[J]. Dent Mater, 2017, 33(1): 110-118.
doi: S0109-5641(16)30620-0
pmid: 27887776
|
| [21] |
He HH, Chi YM, Yuan K, et al. Functional characterization of a reactive oxygen species modulator 1 gene in Litopenaeus vannamei[J]. Fish Shellfish Immunol, 2017, 70: 270-279.
|
| [22] |
Zhang L, Wang K, Lei YL, et al. Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response[J]. Free Radic Biol Med, 2015, 89: 452-465.
|
| [23] |
de Almeida AJPO, de Oliveira JCPL, da Silva Pontes LV, et al. ROS: basic concepts, sources, cellular signaling, and its implications in aging pathways[J]. Oxid Med Cell Longev, 2022, 2022: 1225578.
|
| [24] |
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species(ROS)homeostasis and redox regulation in cellular signaling[J]. Cell Signal, 2012, 24(5): 981-990.
|
| [25] |
Dryden M. Reactive oxygen species: a novel antimicrobial[J]. Int J Antimicrob Agents, 2018, 51(3): 299-303.
|
| [26] |
Wu XF, Yang MY, Kim JS, et al. Reactivity differences enable ROS for selective ablation of bacteria[J]. Angew Chem Int Ed Engl, 2022, 61(17): e202200808.
|
| [27] |
Nie JJ, Yu ZX, Yao DF, et al. Litopenaeus vannamei sirtuin 6 homolog(LvSIRT6)is involved in immune response by modulating hemocytes ROS production and apoptosis[J]. Fish Shellfish Immunol, 2020, 98: 271-284.
|
| [28] |
Benguettat O, Jneid R, Soltys J, et al. The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria[J]. PLoS Pathog, 2018, 14(9): e1007279.
|
| [29] |
Mukherjee S, Hooper LV. Antimicrobial defense of the intestine[J]. Immunity, 2015, 42(1): 28-39.
doi: 10.1016/j.immuni.2014.12.028
pmid: 25607457
|
| [30] |
Tassanakajon A, Somboonwiwat K, Supungul P, et al. Discovery of immune molecules and their crucial functions in shrimp immunity[J]. Fish Shellfish Immunol, 2013, 34(4): 954-967.
|
| [31] |
Yang L, Qiu LM, Fang Q, et al. Cellular and humoral immune interactions between Drosophila and its parasitoids[J]. Insect Sci, 2021, 28(5): 1208-1227.
|
| [32] |
Yu SC, Luo FZ, Xu YY, et al. Drosophila innate immunity involves multiple signaling pathways and coordinated communication between different tissues[J]. Front Immunol, 2022, 13: 905370.
|
| [33] |
Ding D, Sun XJ, Yan M, et al. The ECSIT mediated Toll3-dorsal-ALFs pathway inhibits bacterial amplification in kuruma shrimp[J]. Front Immunol, 2022, 13: 807326.
|
| [34] |
Li HY, Yin B, Wang S, et al. RNAi screening identifies a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobial peptides[J]. PLoS Pathog, 2018, 14(9): e1007109.
|
| [35] |
Wang Z, Chen YH, Dai YJ, et al. A novel vertebrates Toll-like receptor counterpart regulating the anti-microbial peptides expression in the freshwater crayfish, Procambarus clarkii[J]. Fish Shellfish Immunol, 2015, 43(1): 219-229.
|
| [36] |
Zhang HQ, Cheng WZ, Zheng LB, et al. Identification of a group D anti-lipopolysaccharide factor(ALF)from kuruma prawn(Marsupenaeus japonicus)with antibacterial activity against Vibrio parahaemolyticus[J]. Fish Shellfish Immunol, 2020, 102: 368-380.
|
| [37] |
Marra A, Hanson MA, Kondo S, et al. Drosophila antimicrobial peptides and lysozymes regulate gut microbiota composition and abundance[J]. mBio, 2021, 12(4): e0082421.
|