生物技术通报 ›› 2025, Vol. 41 ›› Issue (1): 14-24.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0470

• 综述与专论 • 上一篇    下一篇

蔬菜种子萌发的纳米调控及其机制研究进展

武志健1,2(), 刘广洋2,3, 林志豪2, 盛彬2,4, 陈鸽2, 许晓敏2, 王军伟1(), 徐东辉2,3()   

  1. 1.湖南农业大学园艺学院,长沙 410000
    2.中国农业科学院蔬菜花卉研究所,北京 100081
    3.国家盐碱地综合利用技术创新中心,东营 257347
    4.沈阳农业大学园艺学院,沈阳 110000
  • 收稿日期:2024-05-20 出版日期:2025-01-26 发布日期:2025-01-22
  • 通讯作者: 王军伟,男,博士,副教授,研究方向:蔬菜学;E-mail: JunweiWang87@126.com
    徐东辉,男,博士,研究员,研究方向:蔬菜学;E-mail: xudonghui@caas.cn
  • 作者简介:武志健,男,硕士研究生,研究方向:蔬菜学;E-mail: 3463625130@qq.com
  • 基金资助:
    北京市自然科学基金项目(6242028);国家重点研发计划项目(2022YFF0606800);国家现代农业技术产业体系建设专项基金项目(CARS-23-E03)

Research Progress of Nano-regulation of Vegetable Seed Germination and Its Mechanism

WU Zhi-jian1,2(), LIU Guang-yang2,3, LIN Zhi-hao2, SHENG Bin2,4, CHEN Ge2, XU Xiao-min2, WANG Jun-wei1(), XU Dong-hui2,3()   

  1. 1. College of Horticulture, Hunan Agricultural University, Changsha 410000
    2. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081
    3. National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347
    4. College of Horticulture, Shenyang Agricultural University, Shenyang 110000
  • Received:2024-05-20 Published:2025-01-26 Online:2025-01-22

摘要:

提高种子在非生物胁迫下的萌发率可降低环境恶化对蔬菜安全构成的风险,为全球蔬菜产量提供保障。由于纳米材料具有尺寸小和独特的物理化学性质,在蔬菜生产中可应用于种子引发。纳米引发在改善非生物胁迫下蔬菜种子的萌发方面显示了突出作用。论文将用于调控蔬菜种子萌发的纳米材料分为碳基、硅基、金属颗粒和金属氧化物四类,并列举了部分纳米材料促进蔬菜种子萌发的适宜浓度。描述了不同种类纳米材料常用的合成方法及其影响因素,并比较了传统合成与绿色合成的利弊。重点综述了纳米引发对蔬菜种子和幼苗生理生化指标的影响并归纳为两种调控途径。纳米材料调控种子对水分和养分的吸收以及赤霉素合成等与萌发相关过程,从而促进萌发称为直接调控。间接调控是纳米材料产生活性氧,通过信号传导激活抗氧化系统,提高种子对非生物胁迫的抵抗力从而促进萌发。最后,阐述了纳米材料在种子中的应用,并对纳米引发未来的研究方向进行展望:(1)着重考虑纳米材料在长期条件下对环境的潜在风险,避免经过食物链对人类健康造成不利影响;(2)评估纳米材料在多种非生物胁迫下调节活性氧、保障种子萌发的性能;(3)探索由纳米材料引发产生的活性氧通过信号传导激活防御途径的整体通路;(4)补充纳米材料进入种子的准确机制。

关键词: 纳米材料, 蔬菜种子萌发, 纳米引发, 活性氧, 抗氧化, 非生物胁迫

Abstract:

Improving seed germination under abiotic stress may reduce the risk to vegetable safety posed by environmental degradation and provide guarantees for global vegetable yield. Because of their small size and unique physicochemical properties, nanomaterials can be applied in vegetables production on seed priming. Nano priming has shown a surprising role in improving vegetable seed germination under abiotic stress. This paper classifies nanomaterials used to regulate vegetable seed germination into four categories, namely carbon-based, silicon-based, metal particles and metal oxides, and lists some of the suitable concentrations of nanomaterials for promoting vegetable seed germination. Besides, the paper describes the commonly used synthesis methods for different kinds of nanomaterials and their influencing factors, and compares the advantages and disadvantages of conventional synthesis with green synthesis. This review mainly highlights the effects of nano-priming on the physiological and biochemical indexes of vegetable seeds and seedlings and summarizes into two regulatory pathways. The pathway promotes germination by using nanomaterials to modulate germination-related processes such as water and nutrition uptake and gibberellin synthesis in seeds, which is known as direct regulation. Indirect regulation refers to promote germination involving the generation of reactive oxygen species by nanomaterials, activation of antioxidant systems through signaling, and enhancing the resistance of seeds to abiotic stress. Finally, the paper describes the applications of nanomaterials in seeds and envisions the future research directions of nano-priming: 1)Focusing on the potential risks of nanomaterials to the environment under long-term conditions to avoid adverse effects on human health through the food chain; 2)evaluating the performance of nanomaterials in regulating reactive oxygen species and guaranteeing seed germination under a variety of abiotic stresses; 3)exploring the overall pathway of activating of defense pathways through signaling by reactive oxygen species generated by nanomaterial priming; 4)adding the exact mechanism by which nanomaterials enter the seed.

Key words: nanomaterials, vegetable seeds germination, nano-priming, reactive oxygen species, antioxidant, abiotic stress