生物技术通报 ›› 2025, Vol. 41 ›› Issue (4): 198-210.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1031
• 研究报告 • 上一篇
田琴(
), 刘奎, 吴翔纬, 纪媛媛, 曹一博(
), 张凌云(
)
收稿日期:2024-10-21
出版日期:2025-04-26
发布日期:2025-04-25
通讯作者:
曹一博,女,博士,副教授,研究方向 :经济林抗逆分子机理、经济林果实发育调控机制;E-mail: caoyibo@bjfu.edu.cn作者简介:田琴,女,硕士研究生,研究方向 :经济林(果树)培育与利用;E-mail: 2311925828@qq.com
基金资助:
TIAN Qin(
), LIU Kui, WU Xiang-wei, JI Yuan-yuan, CAO Yi-bo(
), ZHANG Ling-yun(
)
Received:2024-10-21
Published:2025-04-26
Online:2025-04-25
摘要:
目的 解析转录因子VcMYB17在蓝莓响应干旱胁迫过程中的功能,为蓝莓品种改良提供基因资源。 方法 利用生物信息学分析VcMYB17的基本特征。通过RT-qPCR分析VcMYB17的组织表达特异性,检测不同激素处理和干旱胁迫下VcMYB17的表达水平,以及过表达VcMYB17对抗旱应答基因表达水平的影响。瞬时转化烟草检测VcMYB17的亚细胞定位,并在酵母中验证其是否具有转录激活活性。利用农杆菌侵染获得VcMYB17-OE转基因拟南芥及蓝莓愈伤,观察转基因材料的干旱表型,并测定存活率、鲜重、失水率、相对电导率、MDA含量、POD和SOD活性。 结果 VcMYB17是R2R3型MYB转录因子。VcMYB17在蓝莓叶片中高表达,外源施加ABA、GA、MeJA、SA及PEG处理均导致VcMYB17表达水平下调。VcMYB17定位于细胞核,具有转录激活活性。干旱胁迫下,过表达VcMYB17的拟南芥植株及蓝莓愈伤生长受到明显抑制,MDA积累增加,但SOD、POD活性降低;且VcMYB17-OE植株中抗旱应答基因,如AtERD1、AtERD15、AtP5CS1、AtRD29A、AtRD22和AtDREB1A的表达显著低于野生型。 结论 VcMYB17是定位于细胞核的R2R3型MYB转录因子,ABA、GA、MeJA、SA及PEG处理抑制VcMYB17的表达。过表达VcMYB17抑制抗旱应答基因的表达,导致拟南芥及蓝莓愈伤的抗旱性下降。
田琴, 刘奎, 吴翔纬, 纪媛媛, 曹一博, 张凌云. 转录因子VcMYB17调控蓝莓抗旱性的功能研究[J]. 生物技术通报, 2025, 41(4): 198-210.
TIAN Qin, LIU Kui, WU Xiang-wei, JI Yuan-yuan, CAO Yi-bo, ZHANG Ling-yun. Functional Study of Transcription Factor VcMYB17 in Regulating Drought Tolerance in Blueberry[J]. Biotechnology Bulletin, 2025, 41(4): 198-210.
| 基因名称 Gene name | 上游引物 Forward primer sequence (5′‒3′) | 下游引物 Reverse primer sequence (5′‒3′) |
|---|---|---|
| VcMYB17 | ATTCTGAGGAACTTCTAATGCCTT | CCAATCACCGCCATACCCAA |
| VcUBC28 | CCATCCACTTCCCTCCAGATTATCCAT | ACAGATTGAGAGCAGCACCTTGGA |
| Actin | GGTAACATTGTGCTCAGTGGTGG | AACGACCTTAATCTTCATGCTGC |
| AtERD1 | CTTTCTCTATCAGCACGAAACG | CGGTGCGATATATTGACAATCC |
| AtERD15 | TTCGACTTGGTACCCTGATTAC | GGAAGAAGATCAGCTACATCGA |
| AtP5CS1 | AGCTTGATGACGTTATCGATCT | AGATTCCATCAGCATGACCTAG |
| AtRD22 | GACTTTCGATTTTACCGACGAG | CGCTACCGGTTTTACCTTTATG |
| AtRD29A | TTCTGTAAGGACGACGTTTACA | CGTACTCGTTACATCCTCTGTT |
| AtDREB1A | CGTTTCAGGATGAGATGTGTGA | CTCATCGTGCATATAAAACGCA |
表1 RT-qPCR引物序列
Table 1 Sequences of primers for RT-qPCR
| 基因名称 Gene name | 上游引物 Forward primer sequence (5′‒3′) | 下游引物 Reverse primer sequence (5′‒3′) |
|---|---|---|
| VcMYB17 | ATTCTGAGGAACTTCTAATGCCTT | CCAATCACCGCCATACCCAA |
| VcUBC28 | CCATCCACTTCCCTCCAGATTATCCAT | ACAGATTGAGAGCAGCACCTTGGA |
| Actin | GGTAACATTGTGCTCAGTGGTGG | AACGACCTTAATCTTCATGCTGC |
| AtERD1 | CTTTCTCTATCAGCACGAAACG | CGGTGCGATATATTGACAATCC |
| AtERD15 | TTCGACTTGGTACCCTGATTAC | GGAAGAAGATCAGCTACATCGA |
| AtP5CS1 | AGCTTGATGACGTTATCGATCT | AGATTCCATCAGCATGACCTAG |
| AtRD22 | GACTTTCGATTTTACCGACGAG | CGCTACCGGTTTTACCTTTATG |
| AtRD29A | TTCTGTAAGGACGACGTTTACA | CGTACTCGTTACATCCTCTGTT |
| AtDREB1A | CGTTTCAGGATGAGATGTGTGA | CTCATCGTGCATATAAAACGCA |
| 引物名称 Primer name | 序列 Sequence (5′‒3′) |
|---|---|
| VcMYB17-T-F | ATGGGGAGAAGCCCATGTTGC |
| VcMYB17-T-R | TTAATTATCTGCTAGCCAATCACCGCC |
| VcMYB17-pCAMBIA1205-F | CGCGGATCCATGGGGAGAAGCCCA |
| VcMYB17-pCAMBIA1205-R | CGGGGTACCGGCGGTGATTGGCTA |
| VcMYB17-pGBKT7-F | TGCATATGGCCATGGATGGGGAGAAGCCCA |
| VcMYB17-pGBKT7-R | CCGCTGCAGGTCGACATTATCTGCTAGCCA |
| VcMYB17-pCAMBIA1300-F | AGCTCGGTACCCGGGATGGGGAGAAGCCCA |
| VcMYB17-pCAMBIA1300-R | CATGTCGACTCTAGAATTATCTGCTAGCCA |
表2 载体构建引物序列
Table 2 Sequences of primers for vector construction
| 引物名称 Primer name | 序列 Sequence (5′‒3′) |
|---|---|
| VcMYB17-T-F | ATGGGGAGAAGCCCATGTTGC |
| VcMYB17-T-R | TTAATTATCTGCTAGCCAATCACCGCC |
| VcMYB17-pCAMBIA1205-F | CGCGGATCCATGGGGAGAAGCCCA |
| VcMYB17-pCAMBIA1205-R | CGGGGTACCGGCGGTGATTGGCTA |
| VcMYB17-pGBKT7-F | TGCATATGGCCATGGATGGGGAGAAGCCCA |
| VcMYB17-pGBKT7-R | CCGCTGCAGGTCGACATTATCTGCTAGCCA |
| VcMYB17-pCAMBIA1300-F | AGCTCGGTACCCGGGATGGGGAGAAGCCCA |
| VcMYB17-pCAMBIA1300-R | CATGTCGACTCTAGAATTATCTGCTAGCCA |
图1 VcMYB17的鉴定及系统发育分析A:VcMYB17转录组数据分析;B:VcMYB17结构域分析;C:VcMYB17多序列比对;D:VcMYB17系统进化树分析。不同字母代表使用t检验方法差异显著(P<0.05),下同
Fig. 1 Identification and phylogenetic analysis of VcMYB17A: VcMYB17 transcriptome data analysis. B: VcMYB17 domain analysis. C: Multiple sequence alignment of VcMYB17. D: Phylogenetic tree analysis of VcMYB17. Different letters indicate the use of Turkey test methods significantly different (P<0.05), the same below
图2 VcMYB17的表达模式分析A:VcMYB17组织表达特异性分析;B‒E:ABA、GA、MeJA、SA处理后VcMYB17的相对表达量;F:VcMYB17对10% PEG响应情况
Fig. 2 Expression pattern analysis of VcMYB17A: Tissue expression specificity analysis of VcMYB17. B-E: The relative expression of VcMYB17 after ABA, GA, MeJA and SA treatment. F: Response of VcMYB17 to 10% PEG
图3 VcMYB17亚细胞定位及转录活性分析A:VcMYB17亚细胞定位分析,标尺=25 μm;B:VcMYB17转录活性分析
Fig. 3 Subcellular localization and transcriptional activity analysis of VcMYB17A: Subcellular localization analysis of VcMYB17, scale bar=25 μm. B: Transcriptional activity analysis of VcMYB17
图4 VcMYB17-OE拟南芥干旱表型分析及相关指标测定A:DNA水平转基因拟南芥鉴定; B:RT-qPCR转基因拟南芥鉴定;C:不同基因型拟南芥干旱表型分析;D‒I:正常及干旱情况下不同基因型拟南芥生理指标测定结果
Fig. 4 Drought phenotypic analysis of VcMYB17-OE A. thaliana and determination of related indexesA: Identification of transgenic Arabidopsis thaliana at DNA level. B: Identification of transgenic A. thaliana by RT-qPCR. C: Drought phenotype analysis of A.thaliana with different genotypes. D‒I: Results of physiological indexes of A.thaliana with different genotypes under normal and drought conditions
图5 VcMYB17-OE蓝莓愈伤干旱表型分析及相关指标测定A:VcMYB17-OE蓝莓愈伤鉴定;B:转基因愈伤干旱表型分析,bar=2 cm;C‒F:正常及5% PEG处理下生理指标测定结果
Fig. 5 Phenotypic analysis of callus and drought in VcMYB17-OE blueberry and determination of related indexesA: Identification of VcMYB17-OE blueberry callus. B: Phenotypic analysis of transgenic callus drought, bar=2 cm. C‒F: Results of physiological indexes under normal and 5% PEG treatment
| 1 | Thapa G, Sadhukhan A, Panda SK, et al. Molecular mechanistic model of plant heavy metal tolerance [J]. Biometals, 2012, 25(3): 489-505. |
| 2 | 吴文勇. 蓝莓的生物学特性及栽培技术 [J]. 中国南方果树, 2008, 37(2): 50-51. |
| Wu WY. Biological characteristics and cultivation techniques of blueberry [J]. South China Fruits, 2008, 37(2): 50-51. | |
| 3 | 严家驹, 黄作喜, 李强. 蓝莓繁殖技术的研究进展 [J]. 安徽农学通报, 2018, 24(14): 43-46, 120. |
| Yan JJ, Huang ZX, Li Q. Research progress of breeding technology in Semen trigonellae [J]. Anhui Agric Sci Bull, 2018, 24(14): 43-46, 120. | |
| 4 | 徐艺格, 王兴东, 魏鑫, 等. 自然灾害对蓝莓生长发育的影响及防灾措施 [J]. 北方果树, 2023(2): 24-26, 32. |
| Xu YG, Wang XD, Wei X, et al. Effects of natural disasters on the growth and development of blueberries and disaster prevention measures [J]. North Fruits, 2023(2): 24-26, 32. | |
| 5 | 宋泽君, 李培培, 袁斓方, 等. 土壤含水率对蓝莓叶片生理及果实品质的影响 [J]. 南京林业大学学报: 自然科学版, 2023, 47(3): 147-156. |
| Song ZJ, Li PP, Yuan LF, et al. Effects of soil water content on leaf physiology and fruit quality of blueberry [J]. J Nanjing For Univ Nat Sci Ed, 2023, 47(3): 147-156. | |
| 6 | 吴林, 李亚东, 张志东, 等. 三种类型越桔对干旱胁迫的生理反应 [J]. 吉林农业大学学报, 1998, 20(2): 1-4. |
| Wu L, Li YD, Zhang ZD, et al. Physiological responses of three types of blueberries on water stress [J]. J Jilin Agric Univ, 1998, 20(2): 1-4. | |
| 7 | 汪娅琴, 郭小兰, 李培培, 等. 4个兔眼蓝莓品种对持续干旱的生理响应及其抗旱性评价 [J]. 经济林研究, 2021, 39(3): 186-196. |
| Wang YQ, Guo XL, Li PP, et al. Physiological response of four rabbit-eye blueberry cultivars to drought stress and evaluation of drought resistance [J]. Non Wood For Res, 2021, 39(3): 186-196. | |
| 8 | 张真真, 贺位忠. 干旱胁迫下不同栽培基质蓝莓的生理响应及其抗旱性综合评价 [J]. 浙江海洋大学学报: 自然科学版, 2021, 40(2): 181-188. |
| Zhang ZZ, He WZ. The physiological responds of different culture substrates of blueberries to drought stress and the comprehensive evaluation on their drought resistance capacity [J]. J Zhejiang Ocean Univ Nat Sci, 2021, 40(2): 181-188. | |
| 9 | 曾玮玮, 李云霞, 狄露露, 等. 多效唑对蓝莓干旱胁迫的缓解作用研究 [J]. 安徽农业科学, 2012, 40(14): 8063-8065. |
| Zeng WW, Li YX, Di LL, et al. Study on paclobutrazol mitigating effects on drought stress of blueberry (Vaccinium uliginosum linn.) [J]. J Anhui Agric Sci, 2012, 40(14): 8063-8065. | |
| 10 | 陈小民. 外源亚精胺对干旱胁迫下蓝莓生理生化的影响 [D]. 杭州: 浙江农林大学, 2017. |
| Chen XM. Effects of exogenous spermidine on physiology and biochemistry of blueberry under drought stress [D]. Hangzhou: Zhejiang A & F University, 2017. | |
| 11 | 宋方圆. 蓝莓根内深色有隔内生真菌提高蓝莓抗旱性的研究 [D]. 烟台: 鲁东大学, 2017. |
| Song FY. Study on improving drought resistance of blueberries by dark isolated endophytic fungi in blueberries roots [D]. Yantai: Ludong University, 2017. | |
| 12 | 王彦文, 程芮, 耿文竹, 等. 蓝莓蔗糖合成酶基因VdSUS4的鉴定与表达分析 [J/OL]. 分子植物育种, 2024. . |
| Wang YW, Cheng R, Geng WZ, et al. Identification and expression analysis of the sucrose synthase gene VdSUS4 in blueberries [J/OL]. Mol Plant Breed, 2024. . | |
| 13 | 陈玲洁. 蓝莓嫁接及液泡膜水通道蛋白(VcTIPs)介导的耐旱机制研究 [D]. 金华: 浙江师范大学, 2023. |
| Chen LJ. Study on mechanism of drought tolerance mediated by blueberry grafting and vacuole membrane aquaporins (VcTIPs) [D]. Jinhua: Zhejiang Normal University, 2023. | |
| 14 | Zhang CY, Liu HC, Zhang XS, et al. VcMYB4a, an R2R3-MYB transcription factor from Vaccinium corymbosum, negatively regulates salt, drought, and temperature stress [J]. Gene, 2020, 757: 144935. |
| 15 | Liang KH, Wang AB, Sun YJ, et al. Identification and expression of NAC transcription factors of Vaccinium corymbosum L. in response to drought stress [J]. Forests, 2019, 10(12): 1088. |
| 16 | Wang AB, Liang KH, Yang SW, et al. Genome-wide analysis of MYB transcription factors of Vaccinium corymbosum and their positive responses to drought stress [J]. BMC Genomics, 2021, 22(1): 565. |
| 17 | Hrmova M, Hussain SS. Plant transcription factors involved in drought and associated stresses [J]. Int J Mol Sci, 2021, 22(11): 5662. |
| 18 | Jin JP, Zhang H, Kong L, et al. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors [J]. Nucleic Acids Res, 2014, 42(Database issue): D1182-D1187. |
| 19 | Joshi R, Wani SH, Singh B, et al. Transcription factors and plants response to drought stress: current understanding and future directions [J]. Front Plant Sci, 2016, 7: 1029. |
| 20 | Xie YP, Bao CN, Chen PX, et al. Abscisic acid homeostasis is mediated by feedback regulation of MdMYB88 and MdMYB124 [J]. J Exp Bot, 2021, 72(2): 592-607. |
| 21 | Zhang YC, Yu S, Niu PF, et al. RcMYB8 enhances salt and drought tolerance in rose (Rosa chinensis) by modulating RcPR5/1 and RcP5CS1 [J]. Mol Hortic, 2024, 4(1): 3. |
| 22 | Song Q, Kong LF, Yang XR, et al. PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis [J]. Tree Physiol, 2022, 42(10): 2133-2147. |
| 23 | Jian L, Kang K, Choi Y, et al. Mutation of OsMYB60 reduces rice resilience to drought stress by attenuating cuticular wax biosynthesis [J]. Plant J, 2022, 112(2): 339-351. |
| 24 | Peng Y, Tang N, Zou J, et al. Rice MYB transcription factor OsMYB1R1 negatively regulates drought resistance [J]. Plant Growth Regul, 2023, 99(3): 515-525. |
| 25 | Chen HH, Lai LY, Li LX, et al. AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling [J]. Int J Mol Sci, 2020, 21(16): 5727. |
| 26 | Gao F, Yao HP, Zhao HX, et al. Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis [J]. Plant Physiol Biochem, 2016, 109: 387-396. |
| 27 | Wang AB, Wang L, Liu K, et al. Comparative transcriptome profiling reveals the defense pathways and mechanisms in the leaves and roots of blueberry to drought stress [J]. Fruit Res, 2022, 2(1): 1-15. |
| 28 | Qin XJ, Hu J, Xu GH, et al. An efficient transformation system for fast production of VcCHS transgenic blueberry callus and its expressional analysis [J]. Plants (Basel), 2023, 12(16): 2905. |
| 29 | Du H, Feng BR, Yang SS, et al. The R2R3-MYB transcription factor gene family in maize [J]. PLoS One, 2012, 7(6): e37463. |
| 30 | Feller A, Machemer K, Braun EL, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors [J]. Plant J, 2011, 66(1): 94-116. |
| 31 | Ito M. Conservation and diversification of three-repeat Myb transcription factors in plants [J]. J Plant Res, 2005, 118(1): 61-69. |
| 32 | Zhang TQ, Zhang WX, Ding CJ, et al. A breeding strategy for improving drought and salt tolerance of poplar based on CRISPR/Cas9 [J]. Plant Biotechnol J, 2023, 21(11): 2160-2162. |
| 33 | Li X, Wang Z, Sun SF, et al. IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato [J]. J Integr Plant Biol, 2024, 66(2): 176-195. |
| 34 | Gao F, Zhou J, Deng RY, et al. Overexpression of a Tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis [J]. J Plant Physiol, 2017, 214: 81-90. |
| 35 | Yuan Y, Qi LJ, Yang J, et al. A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates flavonoid biosynthesis and improves drought stress tolerance in transgenic tobacco [J]. Plant Cell Tissue Organ Cult, 2015, 120(3): 961-972. |
| 36 | Lv KW, Wei HR, Liu GF. A R2R3-MYB transcription factor gene, BpMYB123, regulates BpLEA14 to improve drought tolerance in Betula platyphylla [J]. Front Plant Sci, 2021, 12: 791390. |
| 37 | Fang Q, Wang XQ, Wang HY, et al. The poplar R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to improve drought tolerance in plants [J]. Tree Physiol, 2020, 40(1): 46-59. |
| 38 | Li XR, Tang Y, Li HL, et al. A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat [J]. Plant Sci, 2020, 299: 110613. |
| 39 | Zhu N, Duan BL, Zheng HL, et al. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation [J]. Plant Physiol Biochem, 2023, 197: 107648. |
| 40 | Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought [J]. Science, 2020, 368(6488): 266-269. |
| 41 | Waadt R, Seller CA, Hsu PK, et al. Plant hormone regulation of abiotic stress responses [J]. Nat Rev Mol Cell Biol, 2022, 23(10): 680-694. |
| 42 | Liu RD, Shen YH, Wang MX, et al. GhMYB102 promotes drought resistance by regulating drought-responsive genes and ABA biosynthesis in cotton (Gossypium hirsutum L.) [J]. Plant Sci, 2023, 329: 111608. |
| 43 | Zhang MX, Zhao RR, Huang K, et al. OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice [J]. Front Plant Sci, 2023, 14: 1168723. |
| 44 | Wu GF, Tian NF, She FW, et al. Characteristics analysis of Early Responsive to Dehydration genes in Arabidopsis thaliana (AtERD) [J]. Plant Signal Behav, 2023, 18(1): 2105021. |
| 45 | 刘颖慧, 王天宇, 黎裕. 拟南芥脱水诱导早期应答基因研究进展 [J]. 中国农业大学学报, 2009, 14(3): 7-11. |
| Liu YH, Wang TY, Li Y. Review of early responsive genes expressed during dehydration in Arabidopsis sp [J]. J China Agric Univ, 2009, 14(3): 7-11. | |
| 46 | 罗佳伟. 苹果MYB家族基因MdMYB48在干旱胁迫下的功能研究 [D]. 杨凌: 西北农林科技大学, 2021. |
| Luo J. Functional characterization of apple MYB family gene MdMYB48 in response to drought stress [D]. Yangling: Northwest A & F University, 2021. | |
| 47 | Sun M, Xu QY, Zhu ZP, et al. AgMYB5, an MYB transcription factor from celery, enhanced β-carotene synthesis and promoted drought tolerance in transgenic Arabidopsis [J]. BMC Plant Biol, 2023, 23(1): 151. |
| 48 | Lan YG, Zhang KM, Wang YM, et al. Comparative analysis of the stellacyanins (SCs) family and focus on drought resistance of PtSC18 in Populus trichocarpa [J]. Gene, 2022, 813: 146106. |
| [1] | 钱祺, 王增辉, 孙荣华, 罗英智, 苏良辰. 花生蛋白磷酸酶AhPDCP37的抗旱性功能研究[J]. 生物技术通报, 2025, 41(3): 98-103. |
| [2] | 刘洁, 王飞, 陶婷, 张玉静, 陈浩婷, 张瑞星, 石玉, 张毅. 过表达SlWRKY41提高番茄幼苗抗旱性[J]. 生物技术通报, 2025, 41(2): 107-118. |
| [3] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
| [4] | 韩凯, 周永顺, 张凯月, 王路, 高剑峰, 陈福龙. 三株小球藻抗旱性能评价[J]. 生物技术通报, 2024, 40(8): 244-254. |
| [5] | 吴丁洁, 陈盈盈, 徐静, 刘源, 张航, 李瑞丽. 植物赤霉素氧化酶及其功能研究进展[J]. 生物技术通报, 2024, 40(7): 43-54. |
| [6] | 文洁, 杜元欣, 吴安波, 杨广容, 鲁敏, 安华明, 南红. 刺梨SOD基因家族鉴定与表达模式分析[J]. 生物技术通报, 2024, 40(5): 153-166. |
| [7] | 陈应娥, 梁巧兰. 植物脱落酸及其受体基因PYL9的作用研究进展[J]. 生物技术通报, 2024, 40(12): 1-11. |
| [8] | 侯鹰翔, 费思恬, 宋松泉, 罗勇, 张超. 水稻MADS-box家族研究进展[J]. 生物技术通报, 2024, 40(11): 103-112. |
| [9] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
| [10] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
| [11] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
| [12] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
| [13] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
| [14] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
| [15] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||