生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 1-11.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0494
• 综述与专论 • 下一篇
收稿日期:
2024-05-26
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
梁巧兰,女,博士生导师,教授,研究方向:作物保护和生物防治;E-mail: liangql@gsau.edu.cn作者简介:
陈应娥,女,博士研究生,研究方向:作物保护;E-mail: 1470857734@qq.com
基金资助:
CHEN Ying-e(), LIANG Qiao-lan(
)
Received:
2024-05-26
Published:
2024-12-26
Online:
2025-01-15
摘要:
脱落酸(abscisic acid, ABA)是一种植物体生长发育所必需的植物激素,参与调节种子的萌发和休眠、根生长、气孔关闭、叶片衰老和脱落等重要过程。其功能的发挥主要是通过一系列信号转导来实现的,而其信号转导的第一步取决于与其受体的结合,PYR1类似蛋白9(PYR1-like protein 9,PYL9)作为其主要受体之一,位于ABA信号通路中的上游,在感应ABA信号后,通过抑制2C型蛋白磷酸酶(protein phosphatase 2C,PP2C)活性进而激活蛋白激酶(SNF2-related protein kinase,SnRK2)的活性,促进下游基因表达,开启ABA信号通路,通过影响植物体内脱落酸信号转导、细胞代谢、植物体内生理生化反应等发挥重要作用,来调控植物抗逆境胁迫和生长发育。本文主要从植物生长中ABA的调节作用、与不同激素信号间的相互作用、合成和代谢途径、信号转导组成及作用、脱落酸受体PYL9的结构、功能特征和PYL9在响应逆境胁迫中发挥的重要作用及其存在的问题等方面进行了综述,并对其应用前景进行了展望,以期为今后开展脱落酸受体基因PYL9功能的系统研究及其在植物抗病毒防御反应机理等方面提供理论依据。
陈应娥, 梁巧兰. 植物脱落酸及其受体基因PYL9的作用研究进展[J]. 生物技术通报, 2024, 40(12): 1-11.
CHEN Ying-e, LIANG Qiao-lan. Research Progress in the Effects of Plant Abscisic Acid and Its Receptor Gene PYL9[J]. Biotechnology Bulletin, 2024, 40(12): 1-11.
[1] | Ruiz-Partida R, Rosario SM, Lozano-Juste J. An update on crop ABA receptors[J]. Plants, 2021, 10(6): 1087. |
[2] |
Ohkuma K, Lyon JL, Addicott FT, et al. Abscisin II, an abscission-accelerating substance from young cotton fruit[J]. Science, 1963, 142(3599): 1592-1593.
doi: 10.1126/science.142.3599.1592 pmid: 17741533 |
[3] | 李长江. 库尔勒香梨花、幼果不同部位内源激素含量的差异分析[D]. 乌鲁木齐: 新疆农业大学, 2016. |
Li CJ. Difference analysis of endogenous hormone contents in different parts of flowers and young fruits of Korla fragrant pear[D]. Urumqi: Xinjiang Agricultural University, 2016. | |
[4] | Alferez F, de Carvalho DU, Boakye D. Interplay between abscisic acid and gibberellins, as related to ethylene and sugars, in regulating maturation of non-climacteric fruit[J]. Int J Mol Sci, 2021, 22(2): 669. |
[5] |
Guo JX, Wang SF, Yu XY, et al. Polyamines regulate strawberry fruit ripening by abscisic acid, auxin, and ethylene[J]. Plant Physiol, 2018, 177(1): 339-351.
doi: 10.1104/pp.18.00245 pmid: 29523717 |
[6] | Srivastava D, Verma G, Chawda K, et al. Overexpression of Asr6, abscisic acid stress-ripening protein, enhances drought tolerance and modulates gene expression in rice(Oryza sativa L.)[J]. Environ Exp Bot, 2022, 202: 105005. |
[7] | 刘旭, 林碧英, 李彩霞, 等. 外源脱落酸对盐胁迫下茄子幼苗生理特性的影响[J]. 河南农业大学学报, 2020, 54(2): 231-236, 268. |
Liu X, Lin BY, Li CX, et al. Effects of exogenous abscisic acid on physiological characteristics of eggplant seedlings under salt stress[J]. J Henan Agric Univ, 2020, 54(2): 231-236, 268. | |
[8] |
Ahanger MA, Siddique KHM, Ahmad P. Understanding drought tolerance in plants[J]. Physiol Plant, 2021, 172(2): 286-288.
doi: 10.1111/ppl.13442 pmid: 34046912 |
[9] | 项洪涛, 李琬, 何宁, 等. 外源脱落酸(ABA)调节植物抗旱机制的研究进展[J]. 东北农业科学, 2022, 47(5): 37-41. |
Xiang HT, Li W, He N, et al. Research progress on exogenous abscisic acid(ABA)regulating plant drought resistance[J]. J Northeast Agric Sci, 2022, 47(5): 37-41. | |
[10] | 章锦涛, 王华, 王松, 等. 外施脱落酸对低温胁迫下山茶花生理生化指标的影响[J]. 安徽农业大学学报, 2017, 44(1): 142-145. |
Zhang JT, Wang H, Wang S, et al. The effect of exogenous abscisic acid on physiological and biochemical indexes of Camellia leaves under chilling stress[J]. J Anhui Agric Univ, 2017, 44(1): 142-145. | |
[11] | 吴鹍伦, 周行, 刘琅, 等. 外源ABA对滨海盐碱地水稻农艺性状与产量构成的调控[J]. 杂交水稻, 2024, 39(5):97-106. |
Wu KL, Zhou H, Liu L, et al. Regulation of agronomic traits and yield composition of rice in coastal saline-alkali land by exogenous ABA[J]. Hybrid Rice, 2024, 39(5):97-106. | |
[12] | Sanchez-Olvera M, Martin-Vasquez C, Mayordomo C, et al. ABA-receptor agonist iSB09 decreases soil water consumption and increases tomato CO2 assimilation and water use efficiency under drought stress[J]. Environ Exp Bot, 2024, 225: 105847. |
[13] | Li X, Huang DM, Lin XF. Interlinked regulator loops of ABA and JA respond to salt and drought stress in Caragana korshinskii[J]. Environ Exp Bot, 2024, 225: 105829. |
[14] | 胡帅, 王芳展, 刘振宁, 等. PYR/PYL/RCAR 蛋白介导植物ABA 的信号转导[J]. 遗传, 2012, 34(5): 560-572. |
Hu S, Wang FZ, Liu ZN, et al. ABA signaling mediated by PYR/PYL/RCAR in plants[J]. Hereditas(Beijing), 2012, 34(5): 560-572. | |
[15] | 孔伟胜, 刘言, 王林娟, 等. 植物SnRK家族的研究进展[J]. 植物生理学报, 2016, 52(4): 413-422. |
Kong WS, Liu Y, Wang LJ, et al. Research progress of plant family of SnRK[J]. Plant Physiol J, 2016, 52(4): 413-422. | |
[16] |
张大鹏. 始于质体/叶绿体的ABA信号通路[J]. 植物学报, 2011, 46(4): 361-369.
doi: 10.3724/SP.J.1259.2011.00361 |
Zhang DP. An abscisic acid signaling pathway starting from plastid/chloroplast[J]. Chin Bull Bot, 2011, 46(4): 361-369. | |
[17] | You Z, Guo SY, Li Q, et al. The CBL1/9-CIPK1 calcium sensor negatively regulates drought stress by phosphorylating the PYLs ABA receptor[J]. Nat Commun, 2023, 14(1): 5886. |
[18] | 赵雷. 植物脱落酸受体PYR/PYL/RCAR的研究进展[J]. 湖北农业科学, 2019, 58(18): 14-18. |
Zhao L. Advances in plant abscisic acid receptor PYR/PYL/RCAR[J]. Hubei Agric Sci, 2019, 58(18): 14-18. | |
[19] |
Zhao Y, Chan ZL, Gao JH, et al. ABA receptor PYL9 promotes drought resistance and leaf senescence[J]. Proc Natl Acad Sci USA, 2016, 113(7): 1949-1954.
doi: 10.1073/pnas.1522840113 pmid: 26831097 |
[20] | Zhang FY, Lu X, Lv ZY, et al. Overexpression of the Artemisia orthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content in Artemisia annua L[J]. PLoS One, 2013, 8(2): e56697. |
[21] | Kim H, Hwang H, Hong JW, et al. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth[J]. J Exp Bot, 2012, 63(2): 1013-1024. |
[22] | Chai YM, Jia HF, Li CL, et al. FaPYR1 is involved in strawberry fruit ripening[J]. J Exp Bot, 2011, 62(14): 5079-5089. |
[23] | Karl D. The discovery of abscisic acid: a retrospect[J]. J Plant Growth Regul, 2015, 34(4): 795-808. |
[24] | 杨秋玲, 季静, 王罡, 等. 类胡萝卜素合成途径终产物脱落酸的合成调控与生物学效应[J]. 天津农业科学, 2011, 17(5): 24-27. |
Yang QL, Ji J, Wang G, et al. Regulation and biological effects of end-product abscisic acid of carotenoid biosynthetic pathway[J]. Tianjin Agric Sci, 2011, 17(5): 24-27. | |
[25] |
Darma R, Lutz A, Elliott CE, et al. Identification of a gene cluster for the synthesis of the plant hormone abscisic acid in the plant pathogen Leptosphaeria maculans[J]. Fungal Genet Biol, 2019, 130: 62-71.
doi: S1087-1845(18)30304-9 pmid: 31034868 |
[26] | Neuman H, Galpaz N, Cunningham FX Jr, et al. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis[J]. Plant J, 2014, 78(1): 80-93. |
[27] |
高金柱, 赵东豪, 高乐, 等. 硝酸铈与脱落酸处理对紫花苜蓿种子萌发和幼苗生理特性的影响[J]. 草业学报, 2024, 33(6): 175-186.
doi: 10.11686/cyxb2023281 |
Gao JZ, Zhao DH, Gao L, et al. Effects of cerium nitrate and abscisic acid treatment on alfalfa seed germination and seedling physiological characteristics[J]. Acta Prataculturae Sinica, 2024, 33(6): 175-186. | |
[28] | Wu QY, He TJ, Liu H, et al. Cell ultrastructure and physiological changes of potato during cold acclimation[J]. Can J Plant Sci, 2019, 99(6): 873-884. |
[29] |
李琬婷, 宁朋, 王菲, 等. 外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响[J]. 应用生态学报, 2020, 31(5): 1543-1550.
doi: 10.13287/j.1001-9332.202005.009 |
Li WT, Ning P, Wang F, et al. Effects of exogenous abscisic acid(ABA)on growth and physiological characteristics of Machilus yunnanensis seedlings under drought stress[J]. Chin J Appl Ecol, 2020, 31(5): 1543-1550.
doi: 10.13287/j.1001-9332.202005.009 |
|
[30] | Qi KJ, Wu X, Xie ZH, et al. Seed coat removal in pear accelerates embryo germination by down-regulating key genes in ABA biosynthesis[J]. J Hortic Sci Biotechnol, 2019, 94(6): 718-725. |
[31] |
Huang Y, Guo YM, Liu YT, et al. 9- cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice[J]. Front Plant Sci, 2018, 9: 162.
doi: 10.3389/fpls.2018.00162 pmid: 29559982 |
[32] |
Assmann SM, Jegla T. Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2[J]. Curr Opin Plant Biol, 2016, 33: 157-167.
doi: S1369-5266(16)30106-6 pmid: 27518594 |
[33] | 周琳, 申加枝, 段玉, 等. 外源脱落酸对茶树生理指标的影响[J]. 江苏农业科学, 2020, 48(12): 102-108. |
Zhou L, Shen JZ, Duan Y, et al. Effects of exogenous abscisic acid on physiological indexes of tea plants[J]. Jiangsu Agric Sci, 2020, 48(12): 102-108. | |
[34] | 费思明. 外源ABA处理的干旱胁迫下甘蓝叶片生理生化及全转录组分析[D]. 杨凌: 西北农林科技大学, 2023. |
Fei SM. Physiological, biochemical and complete transcriptome analysis of cabbage leaves treated with exogenous ABA under drought stress[D]. Yangling: Northwest A & F University, 2023. | |
[35] | 吴巧玉, 何天久. 外源脱落酸对低温胁迫下马铃薯野生材料生理特性的影响[J]. 东北农业科学, 2023, 48(5): 88-91. |
Wu QY, He TJ. Effects of exogenous abscisic acid on physiological characteristics of potato wild materials under low temperature stress[J]. J Northeast Agric Sci, 2023, 48(5): 88-91. | |
[36] | 张钰, 陈慧, 王改萍. 外源ABA对楸树幼苗NaCl胁迫的缓解效应及其生长生理响应特征[J]. 西北植物学报, 2023, 43(6): 996-1005. |
Zhang Y, Chen H, Wang GP. Alleviating effects of exogenous ABA on Catalpa bungei seedlings under NaCl stress and growth physiological response characteristics[J]. Acta Bot Boreali Occidentalia Sin, 2023, 43(6): 996-1005. | |
[37] | Lu X, Chen GP, Ma L, et al. Abscisic acid enhances alkaline stress tolerance in grapevines: physiological and transcriptional profiling[J]. Sci Hortic, 2024, 336: 113368. |
[38] | 李洋洋. AtCNGC2在茉莉酸信号通路中的作用[D]. 济南: 山东师范大学, 2011. |
Li YY. The role of AtCNGC2 in jasmonic acid signaling pathway[D]. Jinan: Shandong Normal University, 2011. | |
[39] |
Sun ZT, He YQ, Li JM, et al. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing[J]. Plant Cell Physiol, 2015, 56(4): 688-699.
doi: 10.1093/pcp/pcu213 pmid: 25535197 |
[40] |
De Vleesschauwer D, Yang YN, Cruz CV, et al. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling[J]. Plant Physiol, 2010, 152(4): 2036-2052.
doi: 10.1104/pp.109.152702 pmid: 20130100 |
[41] | García-Andrade J, Ramírez V, Flors V, et al. Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition[J]. Plant J, 2011, 67(5): 783-794. |
[42] |
Alazem M, Lin NS. Antiviral roles of abscisic acid in plants[J]. Front Plant Sci, 2017, 8: 1760.
doi: 10.3389/fpls.2017.01760 pmid: 29075279 |
[43] | Alazem M, Lin KY, Lin NS. The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus[J]. Mol Plant Microbe Interact, 2014, 27(2): 177-189. |
[44] | Xie KL, Li LL, Zhang HH, et al. Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice[J]. Plant Cell Environ, 2018, 41(10): 2504-2514. |
[45] |
Kai WB, Wang J, Liang B, et al. PYL9 is involved in the regulation of ABA signaling during tomato fruit ripening[J]. J Exp Bot, 2019, 70(21): 6305-6319.
doi: 10.1093/jxb/erz396 pmid: 31504753 |
[46] | Wilmowicz E, Frankowski K, Kućko A, et al. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus[J]. J Plant Physiol, 2016, 206: 49-58. |
[47] | 王小冰. 小麦水通道蛋白PIP2;10与拟南芥核输载体IMPβ1调控免疫相关信号传导的研究[D]. 南京: 南京农业大学, 2020. |
Wang XB. Wheat aquaporin PIP2; Study on regulation of immune-related signal transduction by 10 and Arabidopsis nuclear delivery vector IMPβ1[D]. Nanjing: Nanjing Agricultural University, 2020. | |
[48] | Guo D, Zhou Y, Li HL, et al. Identification and characterization of the abscisic acid(ABA)receptor gene family and its expression in response to hormones in the rubber tree[J]. Sci Rep, 2017, 7: 45157. |
[49] | Kućko A, Wilmowicz E, Ostrowski M. Spatio-temporal IAA gradient is determined by interactions with ET and governs flower abscission[J]. J Plant Physiol, 2019, 236: 51-60. |
[50] |
Meir S, Philosoph-Hadas S, Sundaresan S, et al. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion[J]. Plant Physiol, 2010, 154(4): 1929-1956.
doi: 10.1104/pp.110.160697 pmid: 20947671 |
[51] |
Jin X, Zimmermann J, Polle A, et al. Auxin is a long-range signal that acts independently of ethylene signaling on leaf abscission in Populus[J]. Front Plant Sci, 2015, 6: 634.
doi: 10.3389/fpls.2015.00634 pmid: 26322071 |
[52] | Mandal D, Datta S, Mitra S, et al. ABI3 promotes auxin signalling by regulating SHY2 expression to control primary root growth in response to dehydration stress[J]. J Exp Bot, 2024: erae237. |
[53] | Hang JN, Wu BW, Qiu DY, et al. OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency[J]. J Integr Agric, 2024, 23(4): 1087-1104. |
[54] | Banerjee A, Roychoudhury A. Melatonin application reduces fluoride uptake and toxicity in rice seedlings by altering abscisic acid, gibberellin, auxin and antioxidant homeostasis[J]. Plant Physiol Biochem, 2019, 145: 164-173. |
[55] | Wang YW, Nambeesan SU. Ethylene promotes fruit ripening initiation by downregulating photosynthesis, enhancing abscisic acid and suppressing jasmonic acid in blueberry(Vaccinium ashei)[J]. BMC Plant Biol, 2024, 24(1): 418. |
[56] | Rawat SS, Sandhya S, Laxmi A. Complex genetic interaction between glucose sensor HXK1 and E3 SUMO ligase SIZ1 in regulating plant morphogenesis[J]. Plant Signal Behav, 2024, 19(1): 2341506. |
[57] | 胡鹏伟, 黄桃鹏, 李媚娟, 等. 脱落酸的生物合成和信号调控进展[J]. 生命科学, 2015, 27(9): 1193-1196. |
Hu PW, Huang TP, Li MJ, et al. Research progress on abscisic acid biosynthesis and signaling regulation[J]. Chin Bull Life Sci, 2015, 27(9): 1193-1196. | |
[58] |
Komatsu K, Nishikawa Y, Ohtsuka T, et al. Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens[J]. Plant Mol Biol, 2009, 70(3): 327-340.
doi: 10.1007/s11103-009-9476-z pmid: 19266168 |
[59] |
Sah SK, Reddy KR, Li JX. Abscisic acid and abiotic stress tolerance in crop plants[J]. Front Plant Sci, 2016, 7: 571.
doi: 10.3389/fpls.2016.00571 pmid: 27200044 |
[60] |
De Diego N, Rodríguez JL, Dodd IC, et al. Pinus radiata[J]. Tree Physiol, 2013, 33(5): 537-549.
doi: 10.1093/treephys/tpt033 pmid: 23677119 |
[61] | 万小荣, 李玲. 高等植物脱落酸生物合成途径及其酶调控[J]. 植物学通报, 2004, 21(3): 352-359. |
Wan XR, Li L. Pathways and related enzymes of ABA biosynthesis in higher plants[J]. Chin Bull Bot, 2004, 21(3): 352-359. | |
[62] |
Inomata M, Hirai N, Yoshida R, et al. The biosynthetic pathway to abscisic acid via ionylideneethane in the fungus Botrytis cinerea[J]. Phytochemistry, 2004, 65(19): 2667-2678.
doi: 10.1016/j.phytochem.2004.08.025 pmid: 15464154 |
[63] | 李可心, 王颖, 姚明东, 等. 脱落酸生物合成研究进展[J]. 生物工程学报, 2023, 39(6): 2190-2203. |
Li KX, Wang Y, Yao MD, et al. Research progress of abscisic acid biosynthesis[J]. Chin J Biotechnol, 2023, 39(6): 2190-2203. | |
[64] | Zdunek-Zastocka E, Michniewska B, Pawlicka A, et al. Cadmium alters the metabolism and perception of abscisic acid in Pisum sativum leaves in a developmentally specific manner[J]. Int J Mol Sci, 2024, 25(12): 6582. |
[65] | Nurbekova Z, Srivastava S, Standing D, et al. Arabidopsis aldehyde oxidase 3, known to oxidize abscisic aldehyde to abscisic acid, protects leaves from aldehyde toxicity[J]. Plant J, 2021, 108(5): 1439-1455. |
[66] | Shetty AN, Rao S, Honnale HN, et al. Heterologous expression of SbAP37-transcription factor in Sesamum indicum L. alleviates salt stress and improves antioxidant enzyme activities[J]. Plant Physiol Rep, 2023, 28(3): 418-428. |
[67] | Wu J, Kamanga BM, Zhang WY, et al. Research progress of aldehyde oxidases in plants[J]. PeerJ, 2022, 10: e13119. |
[68] | Zhang Q, Liu YL, He CC, et al. Postharvest exogenous application of abscisic acid reduces internal browning in pineapple[J]. J Agric Food Chem, 2015, 63(22): 5313-5320. |
[69] | 甄梦缘, 王丽芝, 孙超. 脱落酸及其调控植物次生代谢产物生物合成的研究进展[J]. 天津中医药大学学报, 2024, 43(3): 259-267. |
Zhen MY, Wang LZ, Sun C. Research progress of abscisic acid and its regulation on biosynthesis of plant secondary metabolites[J]. J Tianjin Univ Tradit Chin Med, 2024, 43(3): 259-267. | |
[70] | Chen TT, Li GY, Islam MR, et al. Abscisic acid synergizes with sucrose to enhance grain yield and quality of rice by improving the source-sink relationship[J]. BMC Plant Biol, 2019, 19(1): 525. |
[71] | Glennon EKK, Adams LG, Hicks DR, et al. Supplementation with abscisic acid reduces malaria disease severity and parasite transmission[J]. Am J Trop Med Hyg, 2016, 94(6): 1266-1275. |
[72] |
Fan WQ, Zhao MY, Li SX, et al. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots[J]. BMC Plant Biol, 2016, 16: 99.
doi: 10.1186/s12870-016-0764-x pmid: 27101806 |
[73] | 邢璐. 植物激素脱落酸的受体蛋白PYL8和PYL9通过结合转录因子MYB家族成员调控拟南芥的侧根生长[D]. 合肥: 中国科学技术大学, 2016. |
Xing L. The receptor proteins PYL8 and PYL9 of plant hormone abscisic acid regulate the lateral root growth of Arabidopsis thaliana by binding members of transcription factor MYB family[D]. Hefei: University of Science and Technology of China, 2016. | |
[74] |
Fuchs S, Tischer SV, Wunschel C, et al. Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors[J]. Proc Natl Acad Sci USA, 2014, 111(15): 5741-5746.
doi: 10.1073/pnas.1322085111 pmid: 24706923 |
[75] | 陈慧敏, 郝格非. 脱落酸受体调控剂分子设计的研究进展[J]. 植物保护学报, 2021, 48(6): 1208-1216. |
Chen HM, Hao GF. Research progress in molecular design of abscisic acid receptor modulators[J]. Journal of Plant Protection, 2021, 48(6): 1208-1216. | |
[76] |
Zhao Y, Chan ZL, Xing L, et al. The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling[J]. Cell Res, 2013, 23(12): 1380-1395.
doi: 10.1038/cr.2013.149 pmid: 24189045 |
[77] |
Ma Y, Szostkiewicz I, Korte A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009, 324(5930): 1064-1068.
doi: 10.1126/science.1172408 pmid: 19407143 |
[78] | Park SY, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930): 1068-1071. |
[79] | Chen Y, Feng L, Wei N, et al. Overexpression of cotton PYL genes in Arabidopsis enhances the transgenic plant tolerance to drought stress[J]. Plant Physiol Biochem, 2017, 115: 229-238. |
[80] |
Nakagawa M, Kagiyama M, Shibata N, et al. Mechanism of high-affinity abscisic acid binding to PYL9/RCAR1[J]. Genes Cells, 2014, 19(5): 386-404.
doi: 10.1111/gtc.12140 pmid: 24645846 |
[81] | Yin K, Cheng F, Ren HF, et al. Insights into the PYR/PYL/RCAR gene family in pomegranates(Punica granatum L.): a genome-wide study on identification, evolution, and expression analysis[J]. Horticulturae, 2024, 10(5): 502. |
[82] |
Zhang XF, Jiang T, Yu YT, et al. Arabidopsis co-chaperonin CPN20 antagonizes Mg-chelatase H subunit to derepress ABA-responsive WRKY40 transcription repressor[J]. Sci China Life Sci, 2014, 57(1): 11-21.
doi: 10.1007/s11427-013-4587-9 pmid: 24369350 |
[83] |
Bai G, Yang DH, Zhao Y, et al. Interactions between soybean ABA receptors and type 2C protein phosphatases[J]. Plant Mol Biol, 2013, 83(6): 651-664.
doi: 10.1007/s11103-013-0114-4 pmid: 23934343 |
[84] |
Li DK, Li Y, Zhang L, et al. Arabidopsis ABA receptor RCAR1/PYL9 interacts with an R2R3-type MYB transcription factor, AtMYB44[J]. Int J Mol Sci, 2014, 15(5): 8473-8490.
doi: 10.3390/ijms15058473 pmid: 24828206 |
[85] | 颜志明, 王全智, 冯英娜, 等. FaPYL9基因调控草莓果实成熟的分子机理[J]. 西北植物学报, 2015, 35(12): 2379-2384. |
Yan ZM, Wang QZ, Feng YN, et al. Molecular mechanism of FaPYL9 gene regulation in strawberry fruit development[J]. Acta Bot Boreali Occidentalia Sin, 2015, 35(12): 2379-2384. | |
[86] | Liu J, Zhao FL, Guo Y, et al. The ABA receptor-like gene VyPYL9 from drought-resistance wild grapevine confers drought tolerance and ABA hypersensitivity in Arabidopsis[J]. Plant Cell Tissue Organ Cult, 2019, 138(3): 543-558. |
[87] | Jia MX, Feng J, Zhang LN, et al. PaPYL9 is involved in the regulation of apricot fruit ripening through ABA signaling pathway[J]. Hortic Plant J, 2022, 8(4): 461-473. |
[88] | Qi LJ, Liu S, Li C, et al. PHYTOCHROME-INTERACTING FACT-ORS interact with the ABA receptors PYL8 and PYL9 to orchest-rate ABA signaling in darkness[J]. Mol Plant, 2020, 13(3): 414-430. |
[89] | Wang YB, Zhang GF, Zhou HM, et al. GhPYL9-5D and GhPYR1-3 A positively regulate Arabidopsis and cotton responses to ABA, drought, high salinity and osmotic stress[J]. BMC Plant Biol, 2023, 23(1): 310. |
[90] | Yang J, Wang M, Zhou SS, et al. The ABA receptor gene MdPYL9 confers tolerance to drought stress in transgenic apple(Malus domestica)[J]. Environ Exp Bot, 2022, 194: 104695. |
[91] | 王延召, 鲁晓民, 魏良明, 等. 玉米脱落酸受体ZmPYL9基因的克隆及功能探究[J]. 河南农业科学, 2020, 49(1): 18-23. |
Wang YZ, Lu XM, Wei LM, et al. Cloning and function analysis of maize abscisic acid receptor ZmPYL9 gene[J]. J Henan Agric Sci, 2020, 49(1): 18-23. | |
[92] |
Yin P, Fan H, Hao Q, et al. Structural insights into the mechanism of abscisic acid signaling by PYL proteins[J]. Nat Struct Mol Biol, 2009, 16(12): 1230-1236.
doi: 10.1038/nsmb.1730 pmid: 19893533 |
[93] | Razem FA, El-Kereamy A, Abrams SR, et al. The RNA-binding protein FCA is an abscisic acid receptor[J]. Nature, 2006, 439(7074): 290-294. |
[1] | 马博涛, 伍国强, 魏明. bZIP转录因子在植物逆境胁迫响应和生长发育中的作用[J]. 生物技术通报, 2024, 40(9): 148-160. |
[2] | 吴丁洁, 陈盈盈, 徐静, 刘源, 张航, 李瑞丽. 植物赤霉素氧化酶及其功能研究进展[J]. 生物技术通报, 2024, 40(7): 43-54. |
[3] | 刘文浩, 吴刘记, 徐芳. 小肽调控植物分生组织发育的机制及其在作物改良中的研究进展[J]. 生物技术通报, 2024, 40(7): 1-18. |
[4] | 王迪, 张晓宇, 宋宇鑫, 郑东然, 田静, 李玉花, 王宇, 吴昊. 细胞全能性转录因子调控植物组培再生的分子机制研究进展[J]. 生物技术通报, 2024, 40(6): 23-33. |
[5] | 苑海鹏, 叶云舒, 司皓, 纪秋研, 张玉红. 丛枝菌根真菌对植物逆境胁迫抗性及次生代谢产物合成的影响[J]. 生物技术通报, 2024, 40(6): 45-56. |
[6] | 花子晴, 周静远, 董合忠. 双子叶植物下胚轴和顶端弯钩发育及其对出苗的调控机制[J]. 生物技术通报, 2024, 40(4): 23-32. |
[7] | 龚丽丽, 余花, 杨杰, 陈天池, 赵双滢, 吴月燕. 葡萄CYP707A基因家族的鉴定及对果实成熟的功能验证[J]. 生物技术通报, 2024, 40(2): 160-171. |
[8] | 乔承彬, 宋佳伟, 杨辉, 段凯蓉, 冉杰, 孔维儒, 冯培媛, 罗成科, 李培富, 田蕾. 水稻叶宽调控机制及相关基因研究进展[J]. 生物技术通报, 2024, 40(11): 88-102. |
[9] | 侯鹰翔, 费思恬, 宋松泉, 罗勇, 张超. 水稻MADS-box家族研究进展[J]. 生物技术通报, 2024, 40(11): 103-112. |
[10] | 林鑫焱, 张传忠, 戴兵, 王馨珩, 刘剑锋, 温丽, 徐兴健, 方军. 水稻穗发芽遗传与分子机制的研究进展[J]. 生物技术通报, 2024, 40(1): 24-31. |
[11] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[12] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[13] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
[14] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
[15] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1086
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 183
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||