生物技术通报 ›› 2025, Vol. 41 ›› Issue (5): 197-207.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1008
• 研究报告 • 上一篇
刘红利(
), 马一丹, 王婉茹, 杨娅茹, 贺丹, 刘艺平(
), 孔德政
收稿日期:2024-10-15
出版日期:2025-05-26
发布日期:2025-06-05
通讯作者:
刘艺平,女,博士,教授,研究方向 :风景园林植物资源与应用;E-mail: Lyp_163@163.com作者简介:刘红利,女,博士,讲师,研究方向 :园林植物分子育种;E-mail: liuhongli1221@sina.com基金资助:
LIU Hong-li(
), MA Yi-dan, WANG Wan-ru, YANG Ya-ru, HE Dan, LIU Yi-ping(
), KONG De-zheng
Received:2024-10-15
Published:2025-05-26
Online:2025-06-05
摘要:
目的 利用荷花具有较强的重金属吸附能力这一特性,为其参与铜污染防治的植物修复提供优质的基因资源。 方法 基于课题组前期对荷花铜胁迫转录组数据的分析,筛选并克隆荷花铜胁迫的关键基因NnCYP707A1,利用在线网站及软件分析其序列特征和进化关系,通过农杆菌注射烟草观察亚细胞定位情况,通过转化酿酒酵母、瞬时转化荷花,分析其对铜胁迫的响应。 结果 NnCYP707A1的ORF全长1 065 bp,编码354个氨基酸,含有细胞色素P450家族的保守结构域PFGXGXHXCPG;NnCYP707A1蛋白为稳定的亲水性蛋白,分子量为40.592 kD,等电点数为8.68;其属于CYP707A亚族,与毛果杨的PtCYP707A1遗传距离较近;亚细胞定位结果表明,该蛋白定位于细胞质;过表达NnCYP707A1增强了酿酒酵母对铜胁迫的敏感性;过表达荷花植株(OE-CYP707A1)的相关生理指标未得到改善,而沉默荷花植株(cyp707a1)可以缓解铜胁迫对其的抑制作用。 结论 过表达NnCYP707A1对铜胁迫耐受性减弱,降低了荷花的抗铜性。
刘红利, 马一丹, 王婉茹, 杨娅茹, 贺丹, 刘艺平, 孔德政. 荷花NnCYP707A1的克隆及功能分析[J]. 生物技术通报, 2025, 41(5): 197-207.
LIU Hong-li, MA Yi-dan, WANG Wan-ru, YANG Ya-ru, HE Dan, LIU Yi-ping, KONG De-zheng. Cloning and Functional Analysis of NnCYP707A1 Gene from Lotus[J]. Biotechnology Bulletin, 2025, 41(5): 197-207.
| 引物名称Primer name | 引物序列Primer sequence(5′‒3′) | 引物用途Primer use |
|---|---|---|
| CYP707A1-F | ATGATTTCAAACCCAGAAGCTG | 基因克隆 |
| CYP707A1-R | TTACCTGTACTTTGTGGTCAGATGA | Gene cloning |
| 2300-CYP-F | ACGGGGGACGAGCTCGGTACCATGATTTCAAACCCAGAAGCTG | 载体构建 |
| 2300-CYP-R | CTTGCTCACCATGGTGTCGACCCTGTACTTTGTGGTCAGATGA | Vector construction |
| pYES2-CYP707A1-F | GCCGCCAGTGTGCTGGAATTCATGATTTCAAACCCAGAAGCTG | |
| pYES2-CYP707A1-R | ACATGATGCGGCCCTCTAGACCTGTACTTTGTGGTCAGATGA | |
| p-F | GCATAACCACTTTAACTAATAC | |
| p-R | TCGGTTAGAGCGGATGTG | |
| PIR-CYP-F | GCAGAATCTGAATTCGTCGACATGATTTCAAACCCAGAAGCTG | |
| PIR-CYP-R | GCTCGAGAAGCTTGTCGACCCTGTACTTTGTGGTCAGATGA | |
| RI-CYP-F | GCAGAATCTGAATTCGTCGACAGAGATACCACAGCCAGTGTTTTG | |
| RI-CYP-R | GCTCGAGAAGCTTGTCGACCCTGTACTTTGTGGTCAGATG | |
| qPCYP-F | ATTCACCACAGCCCAGACAACTTC | 基因表达分析 |
| qPCYP-R | CATTCCCAGGGCATGAGTGTATCC | Gene expression analysis |
| qPCYP707A1-F | CATTCACCACAGCCCAGACA | |
| qPCYP707A1-R | CAGGGCATGAGTGTATCCCA |
表1 本研究所用引物
Table 1 Primers used in this study
| 引物名称Primer name | 引物序列Primer sequence(5′‒3′) | 引物用途Primer use |
|---|---|---|
| CYP707A1-F | ATGATTTCAAACCCAGAAGCTG | 基因克隆 |
| CYP707A1-R | TTACCTGTACTTTGTGGTCAGATGA | Gene cloning |
| 2300-CYP-F | ACGGGGGACGAGCTCGGTACCATGATTTCAAACCCAGAAGCTG | 载体构建 |
| 2300-CYP-R | CTTGCTCACCATGGTGTCGACCCTGTACTTTGTGGTCAGATGA | Vector construction |
| pYES2-CYP707A1-F | GCCGCCAGTGTGCTGGAATTCATGATTTCAAACCCAGAAGCTG | |
| pYES2-CYP707A1-R | ACATGATGCGGCCCTCTAGACCTGTACTTTGTGGTCAGATGA | |
| p-F | GCATAACCACTTTAACTAATAC | |
| p-R | TCGGTTAGAGCGGATGTG | |
| PIR-CYP-F | GCAGAATCTGAATTCGTCGACATGATTTCAAACCCAGAAGCTG | |
| PIR-CYP-R | GCTCGAGAAGCTTGTCGACCCTGTACTTTGTGGTCAGATGA | |
| RI-CYP-F | GCAGAATCTGAATTCGTCGACAGAGATACCACAGCCAGTGTTTTG | |
| RI-CYP-R | GCTCGAGAAGCTTGTCGACCCTGTACTTTGTGGTCAGATG | |
| qPCYP-F | ATTCACCACAGCCCAGACAACTTC | 基因表达分析 |
| qPCYP-R | CATTCCCAGGGCATGAGTGTATCC | Gene expression analysis |
| qPCYP707A1-F | CATTCACCACAGCCCAGACA | |
| qPCYP707A1-R | CAGGGCATGAGTGTATCCCA |
图2 NnCYP707A1核苷酸序列及其翻译的氨基酸序列绿色框为起始密码子和终止密码子,蓝色框为P450家族保守结构域
Fig. 2 NnCYP707A1 nucleotide sequence and its translated amino acid sequenceThe green boxes are the start and stop codons, and the blue boxes are the P450 family conserved domains
图3 NnCYP707A1蛋白的生物信息学分析A:结构域预测;B:亲疏水性分析;C:蛋白质跨膜结构域分析;D:二级结构预测;E:磷酸化位点分析;F:三级结构预测
Fig. 3 Bioinformatics analysis of NnCYP707A1 proteinA: Domain prediction. B: Hydrophilic analysis. C: Protein transmembrane domain analysis. D: Secondary structure prediction. E: Phosphorylation site analysis. F: Tertiary structure prediction
图6 NnCYP707A1的亚细胞定位35S::GFP:携带空载pC2300-GFP的农杆菌菌株;35S::NnCYP707A1::GFP:携带重组载体pC2300-NnCYP707A1-GFP的农杆菌菌株。比例尺=10 μm
Fig. 6 Subcellular localization of NnCYP707A1 protein35S::GFP: Strains of Agrobacterium carrying empty pC2300-GFP. 35S::NnCYP707A1::GFP: Agrobacterium strain carrying recombinant vector pC2300-NnCYP707A1-GFP. Scale=10 μm
图8 NnCYP707A1的瞬时载体构建A:过表达载体PIR-NnCYP707A1的PCR鉴定;B:沉默载体IR-NnCYP707A1-RI的PCR鉴定;M:DL2000 marker;1-3:重组菌液
Fig. 8 Transient vector construction of NnCYP707A1A: PCR identification of the overexpressed vector PIR-NnCYP707A1. B: PCR identification of silencing vector IR-NnCYP707A1-RI. M: DL2000 marker. 1-3: Recombinant bacterial solution
图9 NnCYP707A1的过表达效率及沉默效率Yanyangtian:对照植株;OE-CYP707A1:过表达荷花植株;cyp707a1:沉默荷花植株。不同小写字母表示存在显著性差异(P<0.05)。下同
Fig. 9 Overexpression efficiency and silencing efficiency of NnCYP707A1 geneYanyangtian: Control plant. OE-CYP707A1: Overexpressed lotus plants. cyp707a1: Silenced lotus plants. Different lowercase letters indicate significant difference (P<0.05). The same below
| 1 | 中华人民共和国国务院. 全国土壤污染情况调查公报[R]. 北京: 环境保护部, 国土资源部, 2014. |
| Council State, People's Republic of China. Bulletin of National Soil Pollution Survey [R]. Beijing: Ministry of Environmental Protection, Ministry of Land and Resources, 2014. | |
| 2 | 马晓华, 张旭乐, 钱仁卷, 等. 镉与铜胁迫下无柄小叶榕的生理响应 [J]. 森林与环境学报, 2019, 39(2): 194-200. |
| Ma XH, Zhang XL, Qian RJ, et al. Physiological response of Ficus concinna var. subsessilis under heavy metal cadmium-copper stress [J]. J For Environ, 2019, 39(2): 194-200. | |
| 3 | 王兴利, 吴晓晨, 王晨野, 等. 水生植物生态修复重金属污染水体研究进展 [J]. 环境污染与防治, 2020, 42(1): 107-112. |
| Wang XL, Wu XC, Wang CY, et al. Research progress on ecological remediation of heavy metal polluted water by aquatic plants [J]. Environ Pollut Contr, 2020, 42(1): 107-112. | |
| 4 | Mishra V, Pathak V, Tripathi B. Accumulation of cadmium and copper from aqueous solutions using Indian Lotus (Nelumbo nucifera) [J]. Ambio, 2009, 38(2): 110-112. |
| 5 | Wang YP, Wang Y, Ji K, et al. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation [J]. Plant Physiol Biochem, 2013, 64: 70-79. |
| 6 | Inomata M, Hirai N, Yoshida R, et al. The biosynthetic pathway to abscisic acid via ionylideneethane in the fungus Botrytis cinerea [J]. Phytochemistry, 2004, 65(19): 2667-2678. |
| 7 | Zeevaart JD, Creelman RA. Metabolism and physiology of abscisic acid [J]. Annu Rev Plant Physiol Plant Mol Biol, 1988, 39: 439-473. |
| 8 | Kondo S, Sugaya S, Sugawa S, et al. Dehydration tolerance in apple seedlings is affected by an inhibitor of ABA 8'-hydroxylase CYP707A [J]. J Plant Physiol, 2012, 169(3): 234-241. |
| 9 | Liu S, Lv Y, Wan XR, et al. Cloning and expression analysis of cDNAs encoding ABA 8'-hydroxylase in peanut plants in response to osmotic stress [J]. PLoS One, 2014, 9(5): e97025. |
| 10 | Okamoto M, Kushiro T, Jikumaru Y, et al. ABA 9'-hydroxylation is catalyzed by CYP707A in Arabidopsis [J]. Phytochemistry, 2011, 72(8): 717-722. |
| 11 | Saito S, Hirai N, Matsumoto C, et al. Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid [J]. Plant Physiol, 2004, 134(4): 1439-1449. |
| 12 | Zheng Y, Huang YY, Xian WH, et al. Identification and expression analysis of the Glycine max CYP707A gene family in response to drought and salt stresses [J]. Ann Bot, 2012, 110(3): 743-756. |
| 13 | Chono M, Honda I, Shinoda S, et al. Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting [J]. J Exp Bot, 2006, 57(10): 2421-2434. |
| 14 | Saika H, Okamoto M, Miyoshi K, et al. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8'-hydroxylase in rice [J]. Plant Cell Physiol, 2007, 48(2): 287-298. |
| 15 | Vallabhaneni R, Wurtzel ET. From epoxycarotenoids to ABA: the role of ABA 8'-hydroxylases in drought-stressed maize roots [J]. Arch Biochem Biophys, 2010, 504(1): 112-117. |
| 16 | Dai SJ, Li P, Chen P, et al. Transcriptional regulation of genes encoding ABA metabolism enzymes during the fruit development and dehydration stress of pear 'Gold Nijisseiki' [J]. Plant Physiol Biochem, 2014, 82: 299-308. |
| 17 | Shen JC, Liu J, Yuan YG, et al. The mechanism of abscisic acid regulation of wild Fragaria species in response to cold stress [J]. BMC Genomics, 2022, 23(1): 670. |
| 18 | Long HT, Zheng Z, Zhang YJ, et al. An abscisic acid (ABA) homeostasis regulated by its production, catabolism and transport in peanut leaves in response to drought stress [J]. PLoS One, 2019, 14(6): e0213963. |
| 19 | Baek D, Shin G, Kim MC, et al. Histone deacetylase HDA9 with ABI4 contributes to abscisic acid homeostasis in drought stress response [J]. Front Plant Sci, 2020, 11: 143. |
| 20 | 蔡淑钰, 刘建新, 王国夫, 等. 褪黑素促进镉胁迫下番茄种子萌发的调控机理 [J]. 植物学报, 2023, 58(5): 720-732. |
| Cai SY, Liu JX, Wang GF, et al. Regulatory mechanism of melatonin on tomato seed germination under Cd2+ stress [J]. Chin Bull Bot, 2023, 58(5): 720-732. | |
| 21 | Gonzalez HCB, Galli V. The CYP707A gene family in strawberry (Fragaria × Ananassa) [J]. Braz Arch Biol Technol, 2021, 64: e21200133. |
| 22 | 李敬蕊, 王育博, 解紫薇, 等. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析 [J]. 生物技术通报, 2023, 39(5): 192-204. |
| Li JR, Wang YB, Xie ZW, et al. Identification and expression analysis of PIN gene family in melon under high temperature stress [J]. Biotechnol Bull, 2023, 39(5): 192-204. | |
| 23 | 高真真, 徐功勋, 王东岭, 等. 桃ABA 8′-羟化酶基因PpeCYP707As在拟南芥中过表达的功能分析 [J]. 园艺学报, 2018, 45(2): 239-249. |
| Gao ZZ, Xu GX, Wang DL, et al. Functional analysis of peach PpeCYP707As gene in Arabidopsis thaliana overexpressing plants [J]. Acta Hortic Sin, 2018, 45(2): 239-249. | |
| 24 | Kushiro T, Okamoto M, Nakabayashi K, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism [J]. EMBO J, 2004, 23(7): 1647-1656. |
| 25 | 康苗苗. 花生胚发育相关家族基因AhCYP707A4s的表达与功能分析 [D]. 福州: 福建农林大学, 2016. |
| Kang MM. Expression and functional analysis of peanut embryo development related family gene AhCYP707A4s [D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. | |
| 26 | Xu ZG, Ge Y, Zhang W, et al. The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation [J]. BMC Plant Biol, 2018, 18(1): 19. |
| 27 | 王帅, 冯宇梅, 白苗, 等. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究 [J]. 生物技术通报, 2023, 39(7): 131-142. |
| Wang S, Feng YM, Bai M, et al. Functional analysis of soybean gene GmHMGR responding to exogenous hormones and abiotic stresses [J]. Biotechnol Bull, 2023, 39(7): 131-142. | |
| 28 | 王媛媛, 刘百超, 姜波, 等. Th2CysPrx基因提高酿酒酵母多种胁迫耐受性研究 [J]. 南京林业大学学报: 自然科学版, 2022, 46(4): 87-94. |
| Wang YY, Liu BC, Jiang B, et al. Th2CysPrx gene enhanced abiotic stress tolerances of Saccharomyces cerevisiae [J]. J Nanjing For Univ Nat Sci Ed, 2022, 46(4): 87-94. | |
| 29 | 朱华, 张子君, 王涛, 等. 番茄黄化曲叶病毒病抗病育种研究进展 [J]. 园艺与种苗, 2022, 42(4): 5-6, 71. |
| Zhu H, Zhang ZJ, Wang T, et al. Research advance of disease resistance breeding on tomato yellow leaf curl virus disease [J]. Hortic Seed, 2022, 42(4): 5-6, 71. | |
| 30 | Peretz Y, Mozes-Koch R, Akad F, et al. A universal expression/silencing vector in plants [J]. Plant Physiol, 2007, 145(4): 1251-1263. |
| 31 | Cao J, Jin QJ, Kuang JY, et al. Regulation of flowering timing by ABA-NnSnRK1 signaling pathway in Lotus [J]. Int J Mol Sci, 2021, 22(8): 3932. |
| 32 | Galal TM, Al-Sodany YM, Al-Yasi HM, et al. Health risks of heavy metals uptake by the curds of cauliflower (Brassica oleracea var. botrytis) grown in contaminated agricultural lands [J]. Appl Ecol Env Res, 2023, 21(2): 975-991. |
| 33 | Nazir F, Hussain A, Fariduddin Q. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress [J]. Chemosphere, 2019, 230: 544-558. |
| 34 | 王钰超. 铜胁迫对茶树光合作用及品质指标的影响 [J]. 现代农业科技, 2021(14): 9-12, 14. |
| Wang YC. Effect of copper stress on photosynthesis and quality index of tea trees [J]. Mod Agric Sci Technol, 2021(14): 9-12, 14. | |
| 35 | 鲜靖苹. 盐及重金属胁迫对龟背竹生理抗性的影响 [J]. 江苏农业科学, 2016, 44(11): 241-244. |
| Xian JP. Effects of salt and heavy metal stress on physiological resistance of Phyllostachys pubescens [J]. Jiangsu Agric Sci, 2016, 44(11): 241-244. | |
| 36 | Souza Junior JC, Nogueirol RC, Monteiro FA. Nitrate and ammonium proportion plays a key role in copper phytoextraction, improving the antioxidant defense in Tanzania Guinea grass [J]. Ecotoxicol Environ Saf, 2019, 171: 823-832. |
| 37 | Mocquot B, Vangronsveld J, Clijsters H, et al. Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities [J]. Plant Soil, 1996, 182(2): 287-300. |
| 38 | Geng AJ, Wang X, Wu LS, et al. Silicon improves growth and alleviates oxidative stress in rice seedlings (Oryza sativa L.) by strengthening antioxidant defense and enhancing protein metabolism under arsanilic acid exposure [J]. Ecotoxicol Environ Saf, 2018, 158: 266-273. |
| 39 | 韩淑敏, 杨立科, 布和, 等. 重金属镉及盐胁迫对白榆幼苗生理特性的影响 [J]. 森林工程, 2022, 38(6): 19-26. |
| Han SM, Yang LK, Bu H, et al. Effects of heavy metal Cd and salt stress on physiological characteristics of Ulmus pumila seedlings [J]. For Eng, 2022, 38(6): 19-26. |
| [1] | 田琴, 刘奎, 吴翔纬, 纪媛媛, 曹一博, 张凌云. 转录因子VcMYB17调控蓝莓抗旱性的功能研究[J]. 生物技术通报, 2025, 41(4): 198-210. |
| [2] | 匡健华, 程志鹏, 赵永晶, 杨洁, 陈润乔, 陈龙清, 胡慧贞. 激素和非生物胁迫下荷花GH3基因家族的表达分析[J]. 生物技术通报, 2025, 41(2): 221-233. |
| [3] | 吴丁洁, 陈盈盈, 徐静, 刘源, 张航, 李瑞丽. 植物赤霉素氧化酶及其功能研究进展[J]. 生物技术通报, 2024, 40(7): 43-54. |
| [4] | 陈应娥, 梁巧兰. 植物脱落酸及其受体基因PYL9的作用研究进展[J]. 生物技术通报, 2024, 40(12): 1-11. |
| [5] | 侯鹰翔, 费思恬, 宋松泉, 罗勇, 张超. 水稻MADS-box家族研究进展[J]. 生物技术通报, 2024, 40(11): 103-112. |
| [6] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
| [7] | 张豪, 李哲, 郭凯, 黄艳华, 郝永任. 绿色木霉Tv-1511组蛋白乙酰化酶编码基因TvGCN5的功能分析[J]. 生物技术通报, 2022, 38(5): 136-148. |
| [8] | 彭国颖, 胡亮, 黄超, 杨坤, 万玮, 黄长干. 紫鸭跖草根组织应答铜胁迫的转录组分析[J]. 生物技术通报, 2022, 38(2): 83-94. |
| [9] | 张泽颖, 范清锋, 邓云峰, 韦廷舟, 周正富, 周建, 王劲, 江世杰. 一株高产脂肪酶菌株WCO-9全基因组测序及比较基因组分析[J]. 生物技术通报, 2022, 38(10): 216-225. |
| [10] | 刘沙玉, 曹健, 李蒙, 柳志强, 李晓宇. 橡胶树胶孢炭疽菌Zn2Cys6型转录因子CgAswA的生物学功能[J]. 生物技术通报, 2021, 37(9): 161-170. |
| [11] | 陈体强, 徐晓兰, 石林春, 钟礼义. 紫芝栽培品种‘武芝2号’(‘紫芝S2’)全基因组测序及分析[J]. 生物技术通报, 2021, 37(11): 42-56. |
| [12] | 仲雨晴, 陈佳佳. 镧对铜胁迫下水稻转录组模式的调控分析[J]. 生物技术通报, 2020, 36(8): 8-14. |
| [13] | 崔亚铨, 冯守帅, 黄兴, 陈金才, 杨海麟. 铜耐受定向驯化强化嗜酸喜温硫杆菌浸出贫黄铜矿[J]. 生物技术通报, 2019, 35(8): 95-102. |
| [14] | 殷朝敏, 范秀芝, 史徳芳, 高虹. CRISPR/Cas基因编辑技术及其在真菌中的应用[J]. 生物技术通报, 2017, 33(3): 58-65. |
| [15] | 蔡深文, 徐仲瑞, 熊治廷, 王加真, 陈瑶. 海州香薷不同抗性种群液泡转化酶基因EhvINV序列趋异及表达差异分析[J]. 生物技术通报, 2016, 32(10): 170-179. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||