[1] Aizza LC, Dornelas MC. A genomic approach to study anthocyaninsynthesis and flower pigmentation in passionflowers. Journal ofNucleic Acids, doi: 10.4061/2011/371517. [2] Hou FY, Wang QM, Li AX. Study progress on anthocyanidinsynthase of plants. Chinese Agricultural Science Bulletin, 2009, 25(21):188-190. [3] 庞红霞, 祝长青, 覃建兵. 植物花青素生物合成相关基因研究进展. 种子, 2010, 29(3):60-63. [4] 卢钰, 董现义, 杜景平. 花色苷研究进展. 山东农业大学学报,2004, 35(2):315-320. [5] Guo FD, Wang XZ, Liu XY, et al. Metabolic regulation of plantsanthocyanin. Chinese Bulletin of Life Sciences, 2011, 23(10):938-944. [6] Jayaram C, Peterson PA. Anthocyanin pigmentation and transposableelements in maize aleurone. Plant Breeding Reviews, 1990, 8: 91-137. [7] 赵宇瑛, 张汉锋. 花青素的研究现状及发展趋势. 安徽农业科学, 2005, 33(5):904-907. [8] Spelt C, Quattrocchio F, Mol JN, et al. anthocyanin1 of petunia encodesa basic helix-loop-helix protein that directly activates transcriptionof structural anthocyanin genes. Plant Cell, 2000, 12(9):1619-1631. [9] Hernandez JM, Heine GF, Irani NG, et al. Different mechanismsparticipate in the R-dependent activity of the R2R3 MYB transcriptionfactor C1. The Journal of Biological Chemistry, 2004, 279(46):48205-48213. [10] Schwinn K, Venail J, Shang Y, et al. A small family of myb-regulatorygenes controls floral pigmentation intensity and patterning inthe genus Antirrhinum. Plant Cell, 2006, 18(4):831-851. [11] 宫硖, 薛静, 张晓东. 植物花青素合成途径中的调控基因研究进展. 生物技术进展, 2011, 1(6):381-390. [12] He F, Mu L, Yan GL, et al. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 2010, 15(12):9057-9091. [13] Yang J, Gu HY, Yang Z. Likehood analysis of the chalocne sythasegenes suggests the role of positive selection in morning glories(Ipomoea). Journal of Molecular Evolution, 2004, 58: 54-63. [14] Wellmanna F, Griesser M, Schwa W, et al. Anthocyanidin synthasefrom Gerbera hybrida catalyzes the conversionof(+)-catechin tocyanidin and a novel procyanidin. FEBS, 2006, 580(6):1642-1648. [15] 张宁, 胡宗利, 陈绪清. 植物花青素代谢途径分析及调控模型建立. 中国生物工程杂志, 2008, 28(1):97-105. [16] 王金玲, 顾红雅. CHS 基因的分子进化研究现状[D] . 北京:高等教育出版社, 2000: 17-24. [17] 蒋明, 曹家树. 查尔酮合成酶基因. 细胞生物学杂志, 2007,29: 525-529. [18] Sommer H, Seadler H. Structure of the chalcone synthase gene ofAntirrhinum majus. Mol Gen Genet, 1986, 202: 429-434. [19] Ferrer JL, Jez JM, Bowman ME, et al. Structure of chalconesynthase and the molecular basis of plant polyketide biosynthesis.Nat Struct Biol, 1999, 6(8):775-784. [20] Springob K, Nakajima J, Yamazaki M, et al. Recent advances in thebiosynthesis and accumulation of anthocyanins. Natural ProductReport, 2003(20):288-303. [21] Van der Krol AR, Lenting RJ, Veenstra JG, et al. An anti-sensechalcone synthase gene in transgenetic plants inhibits flowerpigmentation. Nature, 1988, 333: 860-869. [22] Fukusaki E, Kawasaki K, KajiyamaS, et al. Flower colormodulations of Torenia hybrida by dowuregulation of chalconesynthase genes with RNA interference. Journal of Biotechnology,2004, 111(3):229-240. [23] Jorgensen RA. Cosuppression, flower color patterns and metastablegene expression states. Science, 1995, 268(5211):686-691. [24] 李琳玲, 程华, 许锋, 等. 植物查尔酮异构酶研究进展. 生物技术通讯, 2008, 19(6):935-937. [25] Jez JM, Bowman ME, Dixon RA, Noel JP. Structure and mechanismof the evolutionarily unique plant enzyme chalcone isomerase. NatStruct Biol, 2000, 7(9):786-791. [26] Shimada N, Aoki T, Sato S, et al. A cluster of genes encodes the twotypes of chalcone isomerase involved in the biosynthesis of generalfalavonoids and legume specific 5-deoxy(iso)flavonoid in Lotusjaponicus. Plant Physiology, 2003, 131(3):941-951. [27] Nishihara M, Nakatsuka T, Yamamura S. Flavonoid componentsand flower color change in transgenic tobacco plants by suppressionof chalcone isomerase gene. FEBS Letters, 2005, 579(27):6074-6078. [28] Itoh Y, Higeta D, Suzuki A. Excision of transposable elements fromthe chalcone isomerase and dihydroflavonol 4-reductase genesmay contribute to the variegation of the yellow-flowered carnation(Dianthus caryophyllus). Plant Cell Physiol, 2002, 43(5):578-585. [29] Kim S, Jones R, Yoo KS, et al. Gold color in onions(Alliumcepa):a natural mutation of the chalcone isomerase gene resultingin a premature stop codon. Molecular Genetics and Genomics,2004, 272(4):411-419. [30] OwensDK, Mchlntosh CA. Biosynthesis and function of citrusglycosylated flavonoids. The Biological Activity of Phytochemicals,2011, 41: 67-95. [31] Martin C, Prescott A, Mackay S, et al. Control of anthocyaninbiosynthesis in flowers of Antirrhinum majus. Plant Journal, 1991, 1(1):37-49. [32] Gong Z, Yamazaki M, Sugiyama M, et al. Cloning and molecularanalysis of structural genes involved in anthocyanin biosynthesisand expressed in a forma-specific manner in Perilla futescens. PlantMolecular Biology, 1997, 35(6):915-927. [33] Lukacin R, Britsch L. Identification of strictly conserved histidineand arginine residues as part of the active site in Petunia hybridaflavanone 3-beta-hydroxylase. Eur J Biochem, 1997, 249(3):748-757. [34] 李鹏, 饶灿, 彭江, 等. 植物黄烷酮3-羟化酶的生物信息学分析. 安徽农业科学, 2010, 38(6):2817-2819. [35] Ono E, Fukuchi-Mizutani M, Nakamura N, et al. Yellow flowersgenerated by expression of the aurone biosynthetic pathway. ProcNatl Acad Sci, 2006, 103(29):11075-11080. [36] Zuker A, Tzfira T, Ben-Meir H, et al. Medification of flowercolor and fragrance byan tisense suppression of the flavanone3-hydroxylase gene. Molecular Breeding, 2002, 9(1):33-41. [37] Brugliera F, Barri-Rewell G, Holton TA, et al. Isolation and characterizationof a flavonoid 3’-hydroxylase cDNA clone correspondingto the Ht1 locus of Petunia hybrida. Plant J, 1999, 19(4):441-451. [38] Okinaka Y, Shimada Y, Nakano-Shimada R, et al. Selectiveaccumulation of delphinidin derivatives in tobacco using a putativeflavonoid 3’, 5’-hydroxylase cDNA from Campanula medium.Bioscience Biotechnology Biochemistry, 2003, 67(1):161-165. [39] Martens S, Teeri T, Forkmann G. Heterologous expression ofdihydronavonol 4-reductases from various plant. FEBS Lett, 2002,531(3):453-458. [40] Johnson ET, Yi H, Shin B, et al. Cymbidium hybrida dihydroflavonol4-reductase does not efficiently reduce dihydrokaempferol toproduce orange pelargonidin-type anthocyanins. The Plant Journal,1999, 19(1):81-85. [41] 吴少华, 张大生. 花青素生成相关基因dfr 的研究进展. 福建林学院学报, 2002, 22(2):189-192. [42] Johnson ET, Ryu S, Yi H, et al. Alteration of a single amino acidchanges the substrate specificity of dihydroflavonol 4-reductase.Plant J, 2001, 25(3):325-333. [43] Petit P, Granier T, d’Estaintot BL, et al. Crystal structure of grapedihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis.J Mol Biol, 2007, 368(5):1345-1357. [44] Sahay A, Shakya M. Structure prediction of dihydroflavonol 4-reductaseand anthocyanidin synthase from spinach. Bioinformation,2010, 5(6):259-263. [45] Aida R, Kishimoto S, Tanaka Y, et al. Modification of flower colorin torenia(Torenia fournieri Lind. )by genetic transformation.Plant Sci, 2000, 153(1):33-42. [46] Suda S, Fukui Y, Nakamura N, et al. Flower color modification ofPetunia hybrida eommercial varieties by metabolic engineering.Plant Biotechnology, 2004, 24(5):377-386. [47] Hwang KH, Min BH, Shin H, et al. Petal color changes in carnationplants transformed with an antisense DFR and a CHl gene. HortScience, 2005, 40: 993-1147. [48] Springob K, Nakajima J, Yamazaki M, et al. Recent advances in thebiosynthesis and accumulation of anthocyanins. Natural ProductsReports, 2003, 20(3):288-303. [49] 刘小强. 紫肉甘薯(Ipomoea batatas(L)Lam. )花色素苷生物合成的分子调控研究[D] . 重庆:西南大学, 2010. [50] Rupert C, Jonathan J, Richard WD, et al. Structure and Mechanismof Anthocyanidin Synthase from Arabidopsis thaliana. Structure,2002, 10(1):93-103. [51] Rosati C, Cadic A, Duron M, et al. Molecular characterization of theanthocyanidin synthase gene in Forsythia intermedia reveals organspecificexpression during flower development. Plant Sci, 1999,149: 73-79. [52] Noriko N, Masako FM, Kiyoslai M, et al. RNAi suppression of theanthocyanidin synthase gene in Torenia hybrida yields white flowerswith higher frequency and better stability than antisense and sensesuppression. Plant Biotechn, 2006, 23(1):13-17. [53] Seim C, Oswald N, Borstling D, et al. Being acyanic:an unavoidablefate for many white flowers. Acta Horticulturac, 2003, 612: 83-88. [54] Vogt T, Taylor LP. Flavonol 3-O-glycosyltransferases associatedwith petunia pollen produce gametophyte-specific flavonoldiglycosides. Plant Physiology, 1995, 108(3):903-911. [55] Ju ZG. Activities of chalcone and UDP Gal: flavonoid-3-oglycosyltransferasein relation to anthocyanin synthesis in apple. SciHort, 1995, 63: 175-185. [56] Kobayashi S, Ishimaru M, Ding CK. Comparison of UDP-glucose:flavonoid 3-O-glucosyltransferase(UFGT)gene sequencesbetween white grapes(Vitis vinifera)and their sports with redskin. Plant Sci, 2001, 160(3):543-550. [57] Paul K, Davies C, Simon P. Expression of anthocyanin biosynthesispathway genes in red and white grapes. Plant Molecular Biology,1996, 32(3):565-569. [58] 王惠聪, 黄旭明, 胡桂兵, 等. 荔枝果皮花青苷合成与相关酶的关系研究. 中国农业科学, 2004, 37(12):2028-2032. [59] 付海辉, 辛培尧, 许玉兰, 等. 几种经济植物UFGT 基因的生物信息学分析. 基因组学与应用生物学, 2010, 30(1):92-102. |