Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (12): 155-169.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0537
Previous Articles Next Articles
ZHANG Hai-miao(), LI Yang, LIU Hai-feng, KONG Ling-guang, DING Xin-hua()
Received:
2020-05-07
Online:
2020-12-26
Published:
2020-12-22
Contact:
DING Xin-hua
E-mail:benpaodexiaomiao@163.com;xhding@sdau.edu.cn
ZHANG Hai-miao, LI Yang, LIU Hai-feng, KONG Ling-guang, DING Xin-hua. Research Progress on Regulatory Genes of Important Agronomic Traits and Breeding Utilization in Rice[J]. Biotechnology Bulletin, 2020, 36(12): 155-169.
[1] |
Wang W, Mauleon R, Hu Z, et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice[J]. Nature, 2018,557(7703):43-49.
URL pmid: 29695866 |
[2] |
Vaughan D, Morishima H, Kadowaki K. Diversity in the Oryza genus[J]. Curr Opin Plant Biol, 2003,6(2):139-146.
doi: 10.1016/s1369-5266(03)00009-8 URL pmid: 12667870 |
[3] |
Wang J, Zhou L, Shi H, et al. A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018,361(6406):1026-1028.
doi: 10.1126/science.aat7675 URL |
[4] | Kovach M, Sweeney M, Mccouch S. New insights into the history of rice domestication[J]. Trends Gene, 2007,23(11):578-587. |
[5] |
Tan L, Li X, Liu F, et al. Control of a key transition from prostrate to erect growth in rice domestication[J]. Nature Genetics, 2008,40(11):1360-1364.
URL pmid: 18820699 |
[6] |
Molina J, Sikora M, Garud N, et al. Molecular evidence for a single evolutionary origin of domesticated rice[J]. PNAS, 2011,108(20):8351-8356.
doi: 10.1073/pnas.1104686108 URL pmid: 21536870 |
[7] | Zhang L, Zhu Q, Wu Z, et al. Selection on grain shattering genes and rates of rice domestication[J]. New Phytologist, 2009,184(3):708-720. |
[8] | Civáň P, Brown T. Origin of rice(Oryza sativa L.)domestication genes[J]. Genet Resour Crop Evol, 2017,64(6):1125-1132. |
[9] |
Singh N, Singh B, Rai V, et al. Evolutionary insights based on SNP haplotypes of red pericarp, grain size and starch synthase genes in wild and cultivated rice[J]. Front Plant Sci, 2017,8:972.
URL pmid: 28649256 |
[10] |
Yong Z, Dmytro C, Dave K, et al. A platinum standard pan-genome resource that represents the population structure of Asian rice[J]. Scientific Data, 2020,7(1):113.
URL pmid: 32265447 |
[11] |
Li X, Chen Z, Zhang G, et al. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions[J]. Science China Life Sciences, 2020. DOI: 10.1007/s11427-019-1682-6.
URL pmid: 33141301 |
[12] | Peng S, Tang Q, Zou Y. Current status and challenges of rice production in China[J]. Plant Prod Sci, 2009,12(1):3-8. |
[13] | Trevor G, Vanessa C, Kaiser B. Root based approaches to improving nitrogen use efficiency in plants[J]. Plant Cell & Environment, 2009,32(9):1272-1283. |
[14] |
Li S, Tian Y, Wu K, et al. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018,560(7720):595-600.
URL pmid: 30111841 |
[15] |
Sasaki A, Ashikari M, Ueguchi M, et al. Green revolution:a mutant gibberellin-synjournal gene in rice[J]. Nature, 2002,416(6882):701-702.
URL pmid: 11961544 |
[16] |
Wu K, Wang S, Song W, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020,367(6478):eaaz2046.
URL pmid: 32029613 |
[17] |
Raghothama K. Phosphate acquisition[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999,50:665-693.
URL pmid: 15012223 |
[18] | Chen J, Wang Y, Wang F, et al. The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels[J]. The Plant Cell, 2015,27(3):711-723. |
[19] |
Yang Z, Yang J, Wang Y, et al. Protein phosphatase 95 regulates phosphate homeostasis by affecting phosphate transporter trafficking in rice[J]. The Plant Cell, 2020,32(3):740-757.
URL pmid: 31919298 |
[20] |
Wang F, Deng M, Chen J, et al. Casein kinase2-dependent phosphorylation of phosphate 2 fine-tunes phosphate homeostasis in rice[J]. Plant Physiology, 2020,183(1):250-262.
URL pmid: 32161109 |
[21] |
Ingo D, Nobuyuki U. Potassium channels in plant cells[J]. The FEBS Journal, 2011,278(22):4293-4303.
URL pmid: 21955642 |
[22] |
Li J, Long Y, Qi G, et al. The Os-ATK1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex[J]. The Plant Cell, 2014,26(8):3387-3402.
URL pmid: 25096783 |
[23] |
Shen L, Tian Q, Yang L, et al. Phosphatidic acid directly binds with rice potassium channel OsAKT2 to inhibit its activity[J]. The Plant Journal, 2020,102(4):649-665.
URL pmid: 32128922 |
[24] |
Yang J, Duan G, Li C, et al. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses[J]. Frontiers in Plant Science, 2019,10:1349.
URL pmid: 31681397 |
[25] |
Mikihisa U, Atsushi H, Satoko Y, et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008,455(7210):195-200.
URL pmid: 18690207 |
[26] |
Yao R, Li J, Xie D. Recent advances in molecular basis for strigolactone action[J]. Science China Life Sciences, 2018,61(3):277-284.
URL pmid: 29116554 |
[27] |
Jiang L, Liu X, Xiong G, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013,504(7480):401-405.
URL pmid: 24336200 |
[28] | Wang Y, Shang L, Yu H, et al. A strigolactone biosynjournal gene contributed to the green revolution in rice[J]. Molecular Plant, 2020,2052(20):30071. |
[29] |
Divi K, Priti K. Brassinosteroid:a biotechnological target for enhancing crop yield and stress tolerance[J]. New Biotechnology, 2009,26(3):131-136.
doi: 10.1016/j.nbt.2009.07.006 URL |
[30] |
Bai M, Zhang L, Gampala S, et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. PNAS, 2007,104(34):13839-13844.
doi: 10.1073/pnas.0706386104 URL pmid: 17699623 |
[31] |
Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. The Plant Cell, 2000,12(9):1591-1606.
doi: 10.1105/tpc.12.9.1591 URL pmid: 11006334 |
[32] |
Zhang B, Wang X, Zhao Z, et al. OsBRI1 activates BR signaling by preventing binding between the TPR and kinase domains of OsBSK3 via phosphorylation[J]. Plant Physiology, 2016,170(2):1149-1161.
URL pmid: 26697897 |
[33] |
Tong H, Jin Y, Liu W, et al. Dwarf and low-tillering, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice[J]. Plant J, 2009,58(5):803-816.
URL pmid: 19220793 |
[34] |
Yang C, Shen W, He Y, et al. OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice[J]. PLoS Genetics, 2016,12(6):e1006118.
doi: 10.1371/journal.pgen.1006118 URL pmid: 27332964 |
[35] |
Zhang C, Xu Y, Guo S, et al. Dynamics of brassinosteroid response modulated by negative regulator lic in rice[J]. PLoS Genetics, 2012,8(4):e1002686.
URL pmid: 22570626 |
[36] |
Yang C, Ma Y, He Y, et al. OsOFP19 modulates plant architecture by integrating the cell division pattern and brassinosteroid signaling[J]. Plant J, 2018,93(3):489-501.
doi: 10.1111/tpj.13793 URL pmid: 29205590 |
[37] |
Sun S, Wang T, Wang L, et al. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications, 2018,9(1):2523.
doi: 10.1038/s41467-018-04952-9 URL pmid: 29955063 |
[38] |
Xiao YH, Zhang GX, Liu DP, et al. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice[J]. The Plant Journal:for Cell and Molecular Biology, 2020. DOI: 10.1111/tpj.14692.
URL pmid: 33278042 |
[39] |
Jia L, Wang DK, Duan PG, et al. Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice[J]. The Plant Cell, 2020,32(6):1905-1918.
doi: 10.1105/tpc.19.00468 URL pmid: 32303659 |
[40] | Ren YK, Tian XJ, Li SY, et al. Oryza Sativa mediator subunit OsMED25 interacts with OsBZR1 to regulate brassinosteroid signaling and plant architecture in rice[J]. Journal of Integrative Plant Biology, 2020,7(1):113. |
[41] |
Ke Y, Yuan M, Liu H, et al. The versatile functions of OsALDH2B1 provide a genic basis for growth-defense trade-offs in rice[J]. PNAS, 2020,117(7):3867-3873.
URL pmid: 32024752 |
[42] |
Qing F, Yan S, Saleh A, et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants[J]. Nature, 2012,486(7402):228-232.
doi: 10.1038/nature11162 URL pmid: 22699612 |
[43] |
David D, Godelieve G, Monica H. Hormone defense networking in rice:tales from a different world[J]. Trends in Plant Science, 2013,18(10):555-565.
doi: 10.1016/j.tplants.2013.07.002 URL pmid: 23910453 |
[44] |
Caarls L, Pieterse J, Van M. How salicylic acid takes transcriptional control over jasmonic acid signaling[J]. Frontiers in Plant Science, 2015,6:170.
URL pmid: 25859250 |
[45] |
Zheng X, Spivey N, Zeng W, et al. Coronatine promotes Pseudomonas Syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation[J]. Cell Host & Microbe, 2012,11(6):587-596.
doi: 10.1016/j.chom.2012.04.014 URL pmid: 22704619 |
[46] |
Yuan Y, Zhong S, Li Q, et al. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility[J]. Plant Biotechnology Journal, 2007,5(2):313-324.
doi: 10.1111/j.1467-7652.2007.00243.x URL pmid: 17309686 |
[47] |
Meng F, Yang C, Cao J, et al. A BHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice[J]. Journal of Integrative Plant Biology, 2020. DOI: 10.1111/jipb.12922.
URL pmid: 33210841 |
[48] |
González-Grandío E, Pajoro A, Franco-Zorrilla J, et al. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in arabidopsis axillary buds[J]. PNAS, 2017,114(2):245-254.
doi: 10.1073/pnas.1617231114 URL pmid: 28028245 |
[49] |
Yamaguchi S. Gibberellin metabolism and its regulation[J]. Annual Review of Plant Biology, 2008,59:225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 URL pmid: 18173378 |
[50] |
Dortje G, Chao L, Harikrishnan M, et al. Gibberellins and abscisic acid signal crosstalk:living and developing under unfavorable conditions[J]. Plant Cell Reports, 2013,32(7):1007-1016.
doi: 10.1007/s00299-013-1409-2 URL pmid: 23525744 |
[51] |
Miyako U, Masatoshi N, Ashikari M, et al. Gibberellin receptor and its role in gibberellin signaling in plants[J]. Annual Review of Plant Biology, 2007,58:183-198.
URL pmid: 17472566 |
[52] | Sun T. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants[J]. Current Biology, 2011,21(9):338-345. |
[53] |
Miyako U, Motoyuki A, Masatoshi N, et al. Gibberellin insensitive DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005,437(7059):693-698.
doi: 10.1038/nature04028 URL pmid: 16193045 |
[54] |
Lin Q, Wu F, Sheng P, et al. The SnRK2-APC/C(TE)regulatory module mediates the antagonistic action of gibberellic acid and abscisic acid pathways[J]. Nat Commun, 2015,6:7981.
URL pmid: 26272249 |
[55] |
Lin Q, Zhang Z, Wu F, et al. The APC /CTE E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA[J]. The Plant Cell, 2020,32(6):1973-1987.
doi: 10.1105/tpc.20.00101 URL pmid: 32265265 |
[56] |
Nan J, Jun Y, Yi L, et al. Resistance genes and their interactions with bacterial blight/leaf streak pathogens(Xanthomonas Oryzae)in rice(Oryza Sativa L.)- an updated review[J]. Rice, 2020,13(1):3.
doi: 10.1186/s12284-019-0358-y URL pmid: 31915945 |
[57] |
Yang Z, Xing J, Wang L, et al. Mutations of two feronia-like receptor genes enhance rice blast resistance without growth penalty[J]. J Exp Bot, 2020,71(6):2112-2126.
doi: 10.1093/jxb/erz541 URL pmid: 31986202 |
[58] | Xuan N, Zhang H, Liu X, et al. Analysis of the relationship between blast resistance genes and diseaseresistance of rice germplasm via functional molecular markers[J]. Phyton-international Journal of Experimental Botany, 2020,89(1):45-55. |
[59] | Ji Z, Wang C, Zhao K. Rice routes of countering Xanthomonas Oryzae[J]. International Journal of Molecular Sciences, 2018,19(10):3008. |
[60] |
Meng XL, Xiao G, Telebanco M, et al. The broad-spectrum rice blast resistance(R)gene Pita2 encodes a novel R protein unique from Pita[J]. Rice, 2020,13(1):19.
doi: 10.1186/s12284-020-00377-5 URL pmid: 32170462 |
[61] |
Chen C, Zheng W, Huang X, et al. Major QTL conferring resistance to rice bacterial leaf streak[J]. Agricultural Sciences in China, 2006,5(3):216-220.
doi: 10.1016/S1671-2927(06)60041-2 URL |
[62] |
Feng C, Zhang X, Wu T, et al. The polygalacturonase-inhibiting protein 4(OsPGIP4), a potential component of the qblsr5a locus, confers resistance to bacterial leaf streak in rice[J]. Planta, 2016,243(5):1297-1308.
doi: 10.1007/s00425-016-2480-z URL pmid: 26945855 |
[63] |
Zhao B, Lin X, Poland J, et al. A maize resistance gene functions against bacterial streak disease in rice[J]. PNAS, 2005,102(43):15383-15388.
URL pmid: 16230639 |
[64] |
Liu H, Chang Q, Feng W, et al. Domain dissection of AvrRxo1 for suppressor, avirulence and cytotoxicity functions[J]. PLoS One, 2014,9(12):e113875.
doi: 10.1371/journal.pone.0113875 URL pmid: 25437277 |
[65] |
Wang G, Ding X, Yuan M, et al. Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation[J]. Plant Molecular Biology, 2006,60(3):437-449.
doi: 10.1007/s11103-005-4770-x URL |
[66] |
Masaki S, Hironori K, Aya A, et al. Rice WRKY45 plays important roles in fungal and bacterial disease resistance[J]. Molecular Plant Pathology, 2012,13(1):83-94.
doi: 10.1111/j.1364-3703.2011.00732.x URL |
[67] |
Tao Z, Liu H, Qiu D, et al. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions[J]. Plant Physiology, 2009,151(2):936-948.
doi: 10.1104/pp.109.145623 URL pmid: 19700558 |
[68] |
Bo D, Rosario B, Yuese N, et al. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice[J]. The Plant Cell, 2012,24(9):3783-3794.
doi: 10.1105/tpc.112.101972 URL pmid: 22968716 |
[69] |
Wang J, Qu B, Dou S, et al. The E3 ligase OsPUB15 interacts with the receptor-like kinase Pid2 and regulates plant cell death and innate immunity[J]. BMC Plant Biology, 2015,15(1):49.
doi: 10.1186/s12870-015-0442-4 URL |
[70] |
Hong Y, Liu Q, Cao Y, et al. The OsMPK15 negatively regulates Magnaporthe Oryza and Xoo disease resistance via SA and JA signaling pathway in rice[J]. Frontiers in Plant Science, 2019,10(1):752.
doi: 10.3389/fpls.2019.00752 URL |
[71] |
Li W, Wang K, Chern M, et al. Sclerenchyma cell thickening through enhanced lignification induced by OsMYB30 prevents fungal penetration of rice leaves[J]. New Phytologist, 2020,226(6):1850-1863.
doi: 10.1111/nph.v226.6 URL |
[72] |
Li W, Deng Y, Ning Y, et al. Exploiting broad-spectrum disease resistance in crops:from molecular dissection to breeding[J]. Annual Review of Plant Biology, 2020,71:575-603.
doi: 10.1146/annurev-arplant-010720-022215 URL pmid: 32197052 |
[73] |
Ding X, Cao Y, Huang L, et al. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice[J]. The Plant Cell, 2008,20(1):228-240.
doi: 10.1105/tpc.107.055657 URL pmid: 18192436 |
[74] |
Yang D, Yang Y, He Z. Roles of plant hormones and their interplay in rice immunity[J]. Molecular Plant, 2013,6(3):675-685.
URL pmid: 23589608 |
[75] |
Ju Y, Tian H, Zhang R, et al. Overexpression of OsHSP18. 0-CI enhances resistance to bacterial leaf streak in rice[J]. Rice, 2017,10(1):1-11.
doi: 10.1186/s12284-016-0141-2 URL pmid: 28078486 |
[76] | Li B, Liu Y, Wu T, et al. OsBGLU19 and OsBGLU23 regulate disease resistance to bacterial leaf streak in rice[J]. Journal of Integrative Agriculture, 2019,18(6):1199-1210. |
[77] |
Yang W, Zhang B, Qi G, et al. Identification of the phytosulfokine receptor 1(OsPSKR1)confers resistance to bacterial leaf streak in rice[J]. Planta, 2019,250(5):1603-1612.
URL pmid: 31388828 |
[78] |
Nasir F, Tian L, Shi S, et al. Strigolactones positively regulate defense against Magnaporthe Oryzae in rice(Oryza sativa)[J]. Plant Physiology and Biochemistry, 2019,142:106-116.
doi: 10.1016/j.plaphy.2019.06.028 URL pmid: 31279135 |
[79] |
Chen X, Zuo S, Schwessinger B, et al. An XA21-associated kinase(OsSERK2)regulates immunity mediated by the XA21 and XA3 immune receptors[J]. Molecular Plant, 2014,7(5):874-892.
URL pmid: 24482436 |
[80] |
Daniela B, Felice C, Vincenzo L. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions[J]. Frontiers in Plant Science, 2014,5:228.
doi: 10.3389/fpls.2014.00228 URL pmid: 24904623 |
[81] |
Fan C, Wang G, Wu L, et al. Distinct cellulose and callose accumulation for enhanced bioethanol production and biotic stress resistance in OsSUS3 transgenic rice[J]. Carbohydrate Polymers, 2020,232:115448.
URL pmid: 31952577 |
[82] |
Laura B, Hugo M, Eva M, et al. Plant cell wall-mediated immunity:cell wall changes trigger disease resistance responses[J]. Plant J, 2018,93(4):614-636.
doi: 10.1111/tpj.13807 URL pmid: 29266460 |
[83] |
Wu T, Peng C, et al. OsPGIP1-mediated resistance to bacterial leaf streak in rice is beyond responsive to the polygalacturonase of Xan-thomonas Oryzae pv. Oryzicola[J]. Rice, 2019,12(1):90.
doi: 10.1186/s12284-019-0352-4 URL pmid: 31832906 |
[84] |
Kalunke R, Tundo S, Benedetti M, et al. An update on polygalacturonase-inhibiting protein(PGIP), a leucine-rich repeat protein that protects crop plants against pathogens[J]. Frontiers in Plant Science, 2015,6:146.
doi: 10.3389/fpls.2015.00146 URL pmid: 25852708 |
[85] |
Zhang Z, Li J, Pan Y, et al. Natural variation in CTB4A enhances rice adaptation to cold habitats[J]. Nature Communications, 2017,8:14788.
doi: 10.1038/ncomms14788 URL pmid: 28332574 |
[86] |
Chen LP, Zhao Y, Xu SJ, et al. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice[J]. The New Phytologist, 2018,218(1):219-231.
URL pmid: 29364524 |
[87] |
Chen X, Jiang L, Zheng J, et al. A missense mutation in large grain size 1 increases grain size and enhances cold tolerance in rice[J]. J Exp Bot, 2019,70(15):3851-3866.
doi: 10.1093/jxb/erz192 URL pmid: 31020332 |
[88] |
Liu C, Schläppi M, Mao B, et al. The BZIP 73 transcription factor controls rice cold tolerance at the reproductive stage[J]. Plant Biotechnology Journal, 2019,17(9):1834-1849.
doi: 10.1111/pbi.13104 URL pmid: 30811812 |
[89] | Ge Q, Zhang YY, Xu YY, et al. Cyclophilin OsCYP20-2 with a novel variant integrates defense and cell elongation for chilling response in rice[J]. New Phyto, 2020,225(6):2453-2467. |
[90] |
Tereza T, Despina S, Anna K, et al. Multifaceted roles of heat shock protein 90 molecular chaperones in plant development[J]. Journal of Experimental Botany, 2020,71(14):3966-3985.
URL pmid: 32293686 |
[91] |
Waters ER. The evolution, function, structure, and expression of the plant shsps[J]. J Exp Bot, 2013,64(2):391-403.
doi: 10.1093/jxb/ers355 URL pmid: 23255280 |
[92] |
Guo L, Li J, He J, et al. A class I cytosolic Hsp20 of rice enhances heat and salt tolerance in different organisms[J]. Scientific Reports, 2020,10(1):1383.
URL pmid: 31992813 |
[93] |
Chen K, Guo T, Li X, et al. Translational regulation of plant response to high temperature by a dual-function tRNA his guanylyltransferase in rice[J]. Molecular Plant, 2019,12(8):1123-1142.
doi: 10.1016/j.molp.2019.04.012 URL pmid: 31075443 |
[94] |
Liu X, Lu Y, Yang W, et al. A membrane-associated NAC transcri-ption factor OsNTL3 is involved in thermotolerance in rice[J]. Plant Biotech J, 2020,18(5):1317-1329.
doi: 10.1111/pbi.v18.5 URL |
[95] | Li X, Han H, Chen M, et al. Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice[J]. Plant Molecular Biology, 2017,93(1):21-34. |
[96] | 徐学中, 汪婷, 万旺, 等. 水稻ABA生物合成基因OsNCED3响应干旱胁迫[J]. 作物学报, 2018,44(1):24-31. |
Xu XZ, Wang T, Wan W, et al. ABA biosynjournal gene OsNCED3 confers drought stress tolerance in rice[J]. Acta Agron Sin, 2018,44(1):24-31. | |
[97] | Li N, Kong L, Zhou W, et al. Overexpression of Os2H16 enhances resistance to phytopathogens and tolerance to drought stress in rice[J]. Plant Cell, Tissue and Organ Culture(pctoc), 2013,115(3):429-441. |
[98] |
Li N, Wei SJ, Chen J, et al. OsASR2 regulates the expression of a defence-related gene, Os2HH16, by targeting the GT-1 cis-element[J]. Plant Biotechnology Journal, 2018,16(3):771-783.
doi: 10.1111/pbi.12827 URL pmid: 28869785 |
[99] |
Pan J, Li Z, Wang Q, et al. An S-domain receptor-like kinase, OsESG1, regulates early crown root development and drought resistance in rice[J]. Plant Science, 2020,290:110318.
doi: 10.1016/j.plantsci.2019.110318 URL pmid: 31779898 |
[100] |
Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytologist, 2018,217(2):523-539.
doi: 10.1111/nph.14920 URL |
[101] |
Inès S, Chedly A, Alain B, et al. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress[J]. Annals of Botany, 2015,115(3):433-447.
doi: 10.1093/aob/mcu239 URL pmid: 25564467 |
[102] |
Wang R, Cheng Y, Ke X, et al. Comparative analysis of salt responsive gene regulatory networks in rice and arabidopsis[J]. Computational Biology and Chemistry, 2020,85:107188.
URL pmid: 31954202 |
[103] |
Lin F, Li S, Wang K, et al. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice[J]. Plant Science, 2020,296.
doi: 10.1016/j.plantsci.2020.110474 URL pmid: 32540004 |
[104] | Huang S, Xin S, Xie G, et al. Mutagenesis reveals that the rice OsMPT3 gene is an important osmotic regulatory factor[J]. The Crop Journal, 2020,8(3):465-479. |
[105] | Zhou J, Ju P, Zhang F, et al. OsSRK1, an atypical S-receptor-like kinase positively regulates leaf width and salt tolerance in rice[J]. Rice Science, 2020,27(2):133-142. |
[106] |
Liu X, Feng S, et al. OsNHAD is a chloroplast membrane-located transporter required for resistance to salt stress in rice(Oryza sativa)[J]. Plant Science, 2020,291:110359.
doi: 10.1016/j.plantsci.2019.110359 URL pmid: 31928685 |
[107] |
Kim J, Park S, Kim Y, et al. Overexpression of a proton pumping gene OVP1 enhances salt stress tolerance, root growth and biomass yield by regulating ion balance in rice(Oryza sativa L.)[J]. Environmental and Experimental Botany, 2020,175:104033.
doi: 10.1016/j.envexpbot.2020.104033 URL |
[108] |
Xing Y, Zhang Q. Genetic and molecular bases of rice yield[J]. Annual Review of Plant Biology, 2010,61:421-442.
doi: 10.1146/annurev-arplant-042809-112209 URL pmid: 20192739 |
[109] |
Song X, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown ring-type E3 ubiquitin ligase[J]. Nature Genetics, 2007,39(5):623-630.
doi: 10.1038/ng2014 URL pmid: 17417637 |
[110] |
Mao H, Sun S, Yao J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(45):19579-19584.
doi: 10.1073/pnas.1014419107 URL pmid: 20974950 |
[111] |
Jiang H, Yuexing W, Yunxia F, et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant, 2015,8(10):1455-1465.
doi: 10.1016/j.molp.2015.07.002 URL pmid: 26187814 |
[112] |
Banpu R, Lianguang S, Bin Z, et al. Natural variation in the promoter of TGW2 determines grain width and weight in Rice[J]. New Phytologist, 2020,227(2):629-640.
doi: 10.1111/nph.v227.2 URL |
[113] |
Zuo J, Li J. Molecular genetic dissection of quantitative trait loci regulating rice grain size[J]. Annual Review of Genetics, 2014,48:99-118.
doi: 10.1146/annurev-genet-120213-092138 URL pmid: 25149369 |
[114] |
Huang R, Jiang L, Zheng J, et al. Genetic bases of rice grain shape:so many genes, so little known[J]. Trends in Plant Science, 2013,18(4):218-226.
doi: 10.1016/j.tplants.2012.11.001 URL pmid: 23218902 |
[115] |
Ken I, Naoki H, Yuka M, et al. Loss of function of the IAA-Glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013,45(6):707-711.
doi: 10.1038/ng.2612 URL pmid: 23583977 |
[116] |
Kato T, Segami S, Toriyama M, et al. Detection of QTLs for grain length from large grain rice(Oryza sativa L.)[J]. Breeding Science, 2011,61(3):269-274.
doi: 10.1270/jsbbs.61.269 URL |
[117] |
Ran X, Penggen D, Yu HY, et al. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice[J]. Molecular Plant, 2018,11(6):860-873.
doi: 10.1016/j.molp.2018.04.004 URL pmid: 29702261 |
[118] |
Tao G, Ke C, Nai D, et al. Grain size and number1 negatively regulates the OsMKKK10-OsMKK4-OsMAPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice[J]. The Plant Cell, 2018,30(4):871-888.
doi: 10.1105/tpc.17.00959 URL pmid: 29588389 |
[119] |
Li Y, Fan C, Xing Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011,43(12):1266-1269.
doi: 10.1038/ng.977 URL pmid: 22019783 |
[120] |
Xu C, Liu Y, Li Y, et al. Differential expression of GS5 regulates grain size in rice[J]. J Exp Bot, 2015,66(9):2611-2623.
doi: 10.1093/jxb/erv058 URL pmid: 25711711 |
[121] |
Azizi P, Rafii M, Maziah M, et al. Understanding the shoot apical meristem regulation:a study of the phytohormones, auxin and cytokinin, in rice[J]. Mech Dev, 2015,135:1-15.
doi: 10.1016/j.mod.2014.11.001 URL pmid: 25447356 |
[122] |
Li J, Norville J, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in arabidopsis and nicotiana benthamiana using guide RNA and Cas9[J]. Nature Biotechnology, 2013,31(8):688-691.
doi: 10.1038/nbt.2654 URL pmid: 23929339 |
[123] |
Liu M, Shi Z, Zhang X, et al. Inducible overexpression of ideal plant architecture1 improves both yield and disease resistance in rice[J]. Nature Plants, 2019,5(4):389-400.
doi: 10.1038/s41477-019-0383-2 URL pmid: 30886331 |
[124] |
Zhang Y, Yang Y, Wang C, et al. Overexpression of microrna OsMIR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nature Biotechnology, 2013,31(9):848-852.
doi: 10.1038/nbt.2646 URL |
[125] |
Duan P, Ni S, et al. Regulation of OsGRF4 by OsMIR396 controls grain size and yield in rice[J]. Nature Plants, 2015,2:15203.
doi: 10.1038/nplants.2015.203 URL pmid: 27250749 |
[126] |
Zhang J, Yu Y, Feng Y, et al. MIR408 regulates grain yield and photosynjournal via a phytocyanin protein[J]. Plant Physiology, 2017,175(3):1175-1185.
doi: 10.1104/pp.17.01169 URL pmid: 28904074 |
[127] |
Sun W, Xu X, Li Y, et al. OsMIR530 acts downstream of OsPIL15 to regulate grain yield in rice[J]. New Phytologist, 2020,226(3):823-837.
doi: 10.1111/nph.v226.3 URL |
[128] |
Li Y, Zheng Y, et al. Transcriptome-wide identification of microrna targets in rice[J]. Plant J, 2010,62(5):742-759.
doi: 10.1111/j.1365-313X.2010.04187.x URL pmid: 20202174 |
[129] |
Li Y, Li J, Chen Z, et al. OsMIR167a-targeted auxin response factors modulate tiller angle via fine-tuning auxin distribution in rice[J]. Plant Biotech J, 2020,18(10):2015-2026.
doi: 10.1111/pbi.v18.10 URL |
[130] | Wang W, Chu H, Zhang D, et al. Fine mapping and analysis of DWARF tiller 1 in controlling rice architecture[J]. Journal of Genetics and Genomics, 2013,40(9):490-492. |
[131] |
Fang F, Ye S, Tang J, et al. DWT1/DWL2 act together with OsPIP5K1 to regulate plant uniform growth in rice[J]. New Phytologist, 2020,225(3):1234-1246.
doi: 10.1111/nph.v225.3 URL |
[132] |
Bai S, Yu H, Wang B, et al. Retrospective and perspective of rice breeding in China[J]. Journal of Genetics and Genomics, 2018,45(11):603-612.
URL pmid: 30449538 |
[133] |
Xu H, Wei Y, Zhu Y, et al. Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity[J]. Plant Biotechnology Journal, 2015,13(4):526-539.
doi: 10.1111/pbi.12277 URL pmid: 25545811 |
[134] |
Wang E, Wang J, Zhu X, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008,40(11):1370-1374.
doi: 10.1038/ng.220 URL pmid: 18820698 |
[135] |
Zhang Y, Yu Y, Wang C, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nature Biotechnology, 2013,31(9):848-852.
doi: 10.1038/nbt.2646 URL pmid: 23873084 |
[136] |
Wang S, Li S, et al. The OsSPL16-GW7 regulatory module deter-mines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015,47(8):949-954.
doi: 10.1038/ng.3352 URL pmid: 26147620 |
[137] |
Birla D, Malik K, Sainger M, et al. Progress and challenges in improving the nutritional quality of rice(Oryza sativa L.)[J]. Crit Rev Food Sci Nutr, 2017,57(11):2455-2481.
doi: 10.1080/10408398.2015.1084992 URL pmid: 26513164 |
[138] |
Li Y, Fan C, Xing Y, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014,46(4):398-404.
doi: 10.1038/ng.2923 URL pmid: 24633159 |
[139] |
He Q, Yu J, Kim T, et al. Resequencing reveals different domestication rate for BADH1 and BADH2 in Rice(Oryza sativa)[J]. PLoS One, 2015,10(8):e0134801.
doi: 10.1371/journal.pone.0134801 URL pmid: 26258482 |
[140] |
Fu F, Xue H. Coexpression analysis identifies rice starch regulator 1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynjournal regulator[J]. Plant Physiology, 2010,154(2):927-938.
URL pmid: 20713616 |
[141] |
Wang J, Xu H, Zhu Y, et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynjournal in rice endosperm[J]. J Exp Bot, 2013,64(11):3453-3466.
doi: 10.1093/jxb/ert187 URL pmid: 23846875 |
[142] |
Li X, Wang P, Li J, et al. Maize Golden2-Like genes enhance biomass and grain yields in rice by improving photosynjournal and reducing photoinhibition[J]. Communications Biology, 2020,3(1):151.
doi: 10.1038/s42003-020-0887-3 URL pmid: 32238902 |
[143] |
Yu X, Xia S, Xu Q, et al. Abnormal flower and grain 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality[J]. Science China Life Sciences, 2020,63(2):228-238.
doi: 10.1007/s11427-019-1593-0 URL pmid: 31919631 |
[144] |
Xu G, Yuan M, Ai C, et al. uORF-mediated translation allows engineered plant disease resistance without fitness costs[J]. Nature, 2017,545(7655):491-494.
doi: 10.1038/nature22372 URL pmid: 28514448 |
[145] | 郭韬, 余泓, 邱杰, 等. 中国水稻遗传学研究进展与分子设计育种[J]. 中国科学:生命科学, 2019,49(10):1185-1212. |
Guo T, Yu H, Qiu J, et al. Advances in rice genetics research and molecular design breeding in China[J]. Scientia Sinica, 2019,49(10):1185-1212. | |
[146] |
Shan Q, Zhang Y, et al. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant Biotechnology J, 2015,13(6):791-800.
doi: 10.1111/pbi.2015.13.issue-6 URL |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[3] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[4] | FAN Xin-qi, WANG Hai-yan, CHEN Jing, ZHANG Xiao-juan, GUO Qi, LIANG Du, ZHOU Fu-ping, NIE Meng-en, ZHANG Yi-zhong, LIU Qing-shan. Effects of EMS Mutagenesis on the Seeding Survival and Major Agronomic Traits of Sorghum in M1 Generation [J]. Biotechnology Bulletin, 2023, 39(7): 173-184. |
[5] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[6] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[7] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[8] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[9] | LU Zhen-wan, LI Xue-qi, HUANG Jin-guang, ZHOU Huan-bin. Creation of Glyphosate-tolerant Rice by Cytosine Base Editing [J]. Biotechnology Bulletin, 2023, 39(2): 63-69. |
[10] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[11] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[12] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[13] | LI Peng-cheng, ZHANG Ming-jun, WANG Yin-xiao, LI Xiang-yin, LI Sheng-yan, LANG Zhi-hong. Insect Resistance Identification and Agronomy Traits Analysis of Transgenic Maize HGK60 with Different Genetic Backgrounds [J]. Biotechnology Bulletin, 2023, 39(1): 40-47. |
[14] | WANG Cui-cui, FU Da-qi. Research Progress in the Effects of Ubiquitin-proteasome System on Plant Agronomic Traits [J]. Biotechnology Bulletin, 2023, 39(1): 72-83. |
[15] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 933
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 520
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||