Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (4): 211-223.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0658
Previous Articles Next Articles
LIANG Xin1(), ZHANG Bao-shan1(), LIU Ji-rui2, YU Si1, CHEN Si-yu1
Received:
2020-05-29
Online:
2021-04-26
Published:
2021-05-13
Contact:
ZHANG Bao-shan
E-mail:1041516411@qq.com;baoshan2@snnu.edu.cn
LIANG Xin, ZHANG Bao-shan, LIU Ji-rui, YU Si, CHEN Si-yu. Research Progress of the Effects of Glyphosate on Microorganisms[J]. Biotechnology Bulletin, 2021, 37(4): 211-223.
农产品Agricultural product | FAO/WHO | 美国USA | 欧盟European Union | 加拿大Canada | 中国China |
---|---|---|---|---|---|
大麦Barley | 30 | 30 | 20.0 | 10 | |
玉米Corn | 53 (甜玉米,Wweet corn) | 5.0 0.1 (爆米花,Popcorn) 3.5 (甜玉米,Sweet corn) | 1.0 | 3 | 1 1(鲜食,Fresh) |
黍Millet | 30 | 30 | 0.1 | ||
燕麦Oat | 30 | 30 | 20.0 | 15 35(皮,Shell) | |
稻谷Paddy | 0.1 | 0.1 | 0.1 | ||
黑麦Rye | 30 | 30 | 10.0 | ||
高粱Sorghum | 30 | 30 | 20.0 | ||
小麦Wheat | 30 20 (麸皮,Bran) | 30 | 10.0 | 5 15(麸皮,Bran) | 5(全麦, Whole wheat) 0.5(面粉,Flour) |
豆类Bean | 2 | 5.0 | 2.0 | 4 | 2 |
小扁豆Lentils | 5 | 5.0 | 10.0 | 4 | 5 |
豌豆Pea | 5 | 8.0 | 10.0 | 5 | 5 |
咖啡豆Coffee beans | 1 | 0.1 | |||
荞麦Buckwheat | 30 | 30 | 0.1 | ||
棉籽Cottonseed | 40 | 40 | 10.0 | 40(未精炼,Unrefined) | 0.05(棉籽油,Cottonseed oil) |
亚麻籽Flaxseed | 40 | 10.0 | 3 | ||
芥子籽Mustard seeds | 40 | 10.0 | 10 | ||
花生Peanut | 0.1 | 0.1 | |||
油菜籽Rapeseed | 30 | 20 | 10.0 | 20 | 2 |
芝麻Sesame | 40 | 0.1 | 10 | ||
大豆Soybeans | 20 | 20 | 20.0 | 20 | |
葵花籽Sunflower seeds | 7 | 40 | 20.0 | 7 | |
茶叶Tea | 1 | 2 | 0.1 | 1 | |
苹果Apple | 0.2 | 0.1 | 0.1 | 0.5 | |
甜菜根Beetroot | 15 | 10 | 15 | 10 | |
菜花Cauliflower | 0.2 | 0.1 | 0.1 | ||
胡萝卜Carrot | 5 | 0.1 | 0.1 | ||
鸡肉Chicken | 0.05 | 0.1 | 0.08 | ||
鸡蛋Egg | 0.05 | 0.05 | 0.05 | 0.08 |
Table 1 Maximum residues of glyphosate in main agricultural products
农产品Agricultural product | FAO/WHO | 美国USA | 欧盟European Union | 加拿大Canada | 中国China |
---|---|---|---|---|---|
大麦Barley | 30 | 30 | 20.0 | 10 | |
玉米Corn | 53 (甜玉米,Wweet corn) | 5.0 0.1 (爆米花,Popcorn) 3.5 (甜玉米,Sweet corn) | 1.0 | 3 | 1 1(鲜食,Fresh) |
黍Millet | 30 | 30 | 0.1 | ||
燕麦Oat | 30 | 30 | 20.0 | 15 35(皮,Shell) | |
稻谷Paddy | 0.1 | 0.1 | 0.1 | ||
黑麦Rye | 30 | 30 | 10.0 | ||
高粱Sorghum | 30 | 30 | 20.0 | ||
小麦Wheat | 30 20 (麸皮,Bran) | 30 | 10.0 | 5 15(麸皮,Bran) | 5(全麦, Whole wheat) 0.5(面粉,Flour) |
豆类Bean | 2 | 5.0 | 2.0 | 4 | 2 |
小扁豆Lentils | 5 | 5.0 | 10.0 | 4 | 5 |
豌豆Pea | 5 | 8.0 | 10.0 | 5 | 5 |
咖啡豆Coffee beans | 1 | 0.1 | |||
荞麦Buckwheat | 30 | 30 | 0.1 | ||
棉籽Cottonseed | 40 | 40 | 10.0 | 40(未精炼,Unrefined) | 0.05(棉籽油,Cottonseed oil) |
亚麻籽Flaxseed | 40 | 10.0 | 3 | ||
芥子籽Mustard seeds | 40 | 10.0 | 10 | ||
花生Peanut | 0.1 | 0.1 | |||
油菜籽Rapeseed | 30 | 20 | 10.0 | 20 | 2 |
芝麻Sesame | 40 | 0.1 | 10 | ||
大豆Soybeans | 20 | 20 | 20.0 | 20 | |
葵花籽Sunflower seeds | 7 | 40 | 20.0 | 7 | |
茶叶Tea | 1 | 2 | 0.1 | 1 | |
苹果Apple | 0.2 | 0.1 | 0.1 | 0.5 | |
甜菜根Beetroot | 15 | 10 | 15 | 10 | |
菜花Cauliflower | 0.2 | 0.1 | 0.1 | ||
胡萝卜Carrot | 5 | 0.1 | 0.1 | ||
鸡肉Chicken | 0.05 | 0.1 | 0.08 | ||
鸡蛋Egg | 0.05 | 0.05 | 0.05 | 0.08 |
属/种Genus/species | 草甘膦最小抑菌浓度 Glyphosate minimum inhibitory concentration ,MIC(mg·mL-1) | 菌数量Number of bacteria,log10 | ||
---|---|---|---|---|
MIC值处理 MIC value processing(mean±SD, n=3) | 对照Control(mean±SD, n=3) | |||
巴斯德芽孢杆菌Bacillus badius | 0.150 | 2.24±0.49 | 8.90±0.44 | |
蜡状芽孢杆菌Bacillus cereus | 0.300 | 2.75±0.68 | 8.08±0.12 | |
拟杆菌Bacteriodes vulgatus | 0.600 | 3.54±0.31 | 7.37±0.10 | |
青春双歧杆菌Bifidobacterium adolescentis | 0.075 | 3.87±0.50 | 8.67±0.48 | |
弯曲杆菌Campylobacter coli | 0.150 | 3.07±0.50 | 9.00±0.70 | |
空肠弯曲菌Campylobacter jejuni | 0.150 | 3.90±0.50 | 9.54±0.97 | |
产气荚膜梭菌Clostridium perfringens | 5.000 | 3.37±0.89 | 8.30±0.28 | |
肉毒梭菌A类Clostridium botulinum A C. botulinum A类 | 1.200 | 4.00±0.50 | 8.16±0.32 | |
肉毒梭菌B类Clostridium botulinum B | 1.200 | 3.56±0.45 | 7.60±0.57 | |
大肠杆菌Escherichia coli | 1.200 | 3.15±0.24 | 8.00±0.34 | |
大肠杆菌1917 NissleE. coli 1917 Nissle | 1.200 | 2.35±0.24 | 7.26±0.21 | |
粪肠球菌Enterococcus faecalis | 0.150 | 2.00±0.45 | 8.49±0.58 | |
粪肠球菌Enterococcus faecalis | 0.150 | 2.01±0.34 | 7.06±0.95 | |
念珠菌*Geotrichum candidum* | 0.625 | |||
布氏乳杆菌Lactobacillus buchneri | 0.600 | 4.00±0.88 | 8.00±0.22 | |
干酪乳杆菌Lactobacillus casei | 0.600 | 4.74±0.56 | 8.28±0.35 | |
德氏乳杆菌亚种.保加利亚* L.delbrueckii subsp.bulgaricus * | 1.000 | |||
乳杆菌亚种 Cremoris *L.lactis subsp. Cremoris* | 0.312 | |||
哈尔滨乳杆菌Lactobacillus harbinensis | 0.600 | 5.30±0.44 | 8.40±0.32 | |
厌食里氏杆菌Riemerella anatipestifer | 0.150 | 4.00±0.50 | 7.88±0.50 | |
肠炎沙门氏菌Salmonella enteritidis | 5.000 | 2.35±0.26 | 8.28±0.16 | |
鸡沙门氏菌Salmonella gallinarum | 5.000 | 2.15±0.33 | 8.68±0.20 | |
鼠伤寒沙门氏菌Salmonella typhimurium | 5.000 | 2.75±0.68 | 8.03±0.16 | |
金黄色葡萄球菌Staphylococcus aureus | 0.300 | 5.74±0.58 | 9.00±0.10 | |
溶血链球菌Streptococcus hemolyticus | 0.300 | 5.74±0.32 | 8.08±0.16 | |
缓慢葡萄球菌Staphylococcus lentus | 0.300 | 3.90±0.44 | 8.08±0.14 |
Table 2 Antibacterial effect of glyphosate on microorganisms
属/种Genus/species | 草甘膦最小抑菌浓度 Glyphosate minimum inhibitory concentration ,MIC(mg·mL-1) | 菌数量Number of bacteria,log10 | ||
---|---|---|---|---|
MIC值处理 MIC value processing(mean±SD, n=3) | 对照Control(mean±SD, n=3) | |||
巴斯德芽孢杆菌Bacillus badius | 0.150 | 2.24±0.49 | 8.90±0.44 | |
蜡状芽孢杆菌Bacillus cereus | 0.300 | 2.75±0.68 | 8.08±0.12 | |
拟杆菌Bacteriodes vulgatus | 0.600 | 3.54±0.31 | 7.37±0.10 | |
青春双歧杆菌Bifidobacterium adolescentis | 0.075 | 3.87±0.50 | 8.67±0.48 | |
弯曲杆菌Campylobacter coli | 0.150 | 3.07±0.50 | 9.00±0.70 | |
空肠弯曲菌Campylobacter jejuni | 0.150 | 3.90±0.50 | 9.54±0.97 | |
产气荚膜梭菌Clostridium perfringens | 5.000 | 3.37±0.89 | 8.30±0.28 | |
肉毒梭菌A类Clostridium botulinum A C. botulinum A类 | 1.200 | 4.00±0.50 | 8.16±0.32 | |
肉毒梭菌B类Clostridium botulinum B | 1.200 | 3.56±0.45 | 7.60±0.57 | |
大肠杆菌Escherichia coli | 1.200 | 3.15±0.24 | 8.00±0.34 | |
大肠杆菌1917 NissleE. coli 1917 Nissle | 1.200 | 2.35±0.24 | 7.26±0.21 | |
粪肠球菌Enterococcus faecalis | 0.150 | 2.00±0.45 | 8.49±0.58 | |
粪肠球菌Enterococcus faecalis | 0.150 | 2.01±0.34 | 7.06±0.95 | |
念珠菌*Geotrichum candidum* | 0.625 | |||
布氏乳杆菌Lactobacillus buchneri | 0.600 | 4.00±0.88 | 8.00±0.22 | |
干酪乳杆菌Lactobacillus casei | 0.600 | 4.74±0.56 | 8.28±0.35 | |
德氏乳杆菌亚种.保加利亚* L.delbrueckii subsp.bulgaricus * | 1.000 | |||
乳杆菌亚种 Cremoris *L.lactis subsp. Cremoris* | 0.312 | |||
哈尔滨乳杆菌Lactobacillus harbinensis | 0.600 | 5.30±0.44 | 8.40±0.32 | |
厌食里氏杆菌Riemerella anatipestifer | 0.150 | 4.00±0.50 | 7.88±0.50 | |
肠炎沙门氏菌Salmonella enteritidis | 5.000 | 2.35±0.26 | 8.28±0.16 | |
鸡沙门氏菌Salmonella gallinarum | 5.000 | 2.15±0.33 | 8.68±0.20 | |
鼠伤寒沙门氏菌Salmonella typhimurium | 5.000 | 2.75±0.68 | 8.03±0.16 | |
金黄色葡萄球菌Staphylococcus aureus | 0.300 | 5.74±0.58 | 9.00±0.10 | |
溶血链球菌Streptococcus hemolyticus | 0.300 | 5.74±0.32 | 8.08±0.16 | |
缓慢葡萄球菌Staphylococcus lentus | 0.300 | 3.90±0.44 | 8.08±0.14 |
降解途径Degradation pathway | 菌株Strain | 来源Source | 中间代谢产物Intermediate metabolite | 草甘膦提供的营养素 Nutrients provided by glyphosate |
---|---|---|---|---|
AMPA途径AMPA pathway | 无色杆菌 LW9 Achromobacter sp. LW9 | 草甘膦工业废水中的活性污泥Sludge in glyphosate industrial wastewater | AMPA | 唯一C源Sole carbon source |
放射土壤杆菌SW9 Agrobacterium radiobacter SW9 | 活性污泥Sludge | AMPA | 唯一C源,少量AMPA Sole carbon source, little AMPA | |
厌氧节杆菌ATCC Arthrobacter atrocyaneus ATCC | 德国农田土壤German farmland soil | AMPA和CO2 AMPA and CO2 | 唯一P源Sole phosphorus source | |
黄杆菌属 GD1 Flavobacterium sp. GD1 | 孟山都活性污泥Monsanto’s sludge | AMPA和磷酸AMPA and phosphoric acid | 唯一P源Sole phosphorus source | |
溶钙芽孢杆菌T20 Geobacillus caldoxylosilyticus T20 | 水中Water | AMPA和乙醛酸AMPA and glyoxylic acid | 唯一P源Sole phosphorus source | |
赭杆菌 Ochrobactrum sp. GDOS | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
假单胞假单胞菌22 Pseudomonas pseudomallei 22 | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
假单胞菌 SG-1 Pseudomonas sp. SG-1 | 富氧液体Oxygen-rich liquid | AMPA | 唯一P源Sole phosphorus source | |
肌氨酸途Sarcosine pathway | 无色杆菌 MPK 7A Achromobacter sp. MPK 7A | 草甘膦污染土壤Glyphosate contaminated soil | 肌氨酸Sarcosine | 唯一P源Sole phosphorus source |
无色杆菌 MPS 12A Achromobacter sp. MPS 12A | AMPA污染土壤AMPA contaminated soil | 肌氨酸,甘氨酸, 甲醛Sarcosine, glycine and formaldehyde | 唯一P源Sole phosphorus source | |
放射土壤杆菌 Agrobacterium radiobacter | 污泥Sludge | AMPA | 唯一P源Sole phosphorus source | |
产碱菌 GL Alcaligenes sp. GL | 从非纯菌培养的产碱菌中分离Isolated from non-pure species of Alcaligenes | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
关节杆菌 GLP-1 Arthrobacter sp. GLP-1 | 被草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
阴沟肠杆菌K7 Enterobacter cloacae K7 | 植物根Root of plant | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
中间赭杆菌Sq20 Ochrobactrum intermedium Sq20 | 草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一C源Sole carbon source | |
假单胞菌 4ASW Pseudomonas sp. 4ASW | 草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸Sarcosine | 唯一P源Sole phosphorus source | |
假单胞菌 GLC11 Pseudomonas sp. GLC11 | 假单胞菌 1号的突变株Mutant strain of Pseudomonas sp. PAO1 | APMA | 唯一P源Sole phosphorus source | |
假单胞菌 PG2982 Pseudomonas sp. PG2982 | 铜绿假单胞菌ATCC 9027的突变株Mutant strain of Pseudomonas aeruginosa ATCC 9027 | 肌氨酸,磷酸,甘氨酸,甲醛Sarcosine, phosphoric acid, glycine and formaldehyde | 唯一P源Sole phosphorus source | |
苜蓿根瘤菌1021 Rhizobiaceae meliloti 1021 | 有链霉素抗性的苜蓿根瘤菌的突变株Mutant strain of Rhizobiaceae meliloti with streptomycin resisfance | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
链霉菌 StC Streptomycete sp. StC | 污水处理厂的生污Sludge from sewage treatment plant | 肌氨酸,甘氨酸sarcosine and glycine | C源、N源或P源 Carbon, nitrogen or phosphorus source | |
青霉Penicillium sp. | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
帚霉属Scopulariopsis sp. | 植物、昆虫体内Plants and insects | AMPA | 唯一P源Sole phosphorus source | |
木霉Trichoderma spp. | 柑橘及其他水果Citrus and other fruits | AMPA | 唯一P源Sole phosphorus source | |
曲霉Aspergillus spp. | 谷物及土壤Grains and soil | AMPA | N源和P源Nitrogen and phosphorus sources | |
双途径Both pathways | 蜡状芽孢杆菌CB4 Bacillus cereus CB4 | 动物肠道及污水Animal intestines and sewage | AMPA、乙醛酸、肌氨酸和甘氨酸AMPA, glyoxylic acid, sarcosine and glycine | C源和P源Carbon source and phosphorus source |
Table 3 Microorganisms that can degrade glyphosate[47,51-53]
降解途径Degradation pathway | 菌株Strain | 来源Source | 中间代谢产物Intermediate metabolite | 草甘膦提供的营养素 Nutrients provided by glyphosate |
---|---|---|---|---|
AMPA途径AMPA pathway | 无色杆菌 LW9 Achromobacter sp. LW9 | 草甘膦工业废水中的活性污泥Sludge in glyphosate industrial wastewater | AMPA | 唯一C源Sole carbon source |
放射土壤杆菌SW9 Agrobacterium radiobacter SW9 | 活性污泥Sludge | AMPA | 唯一C源,少量AMPA Sole carbon source, little AMPA | |
厌氧节杆菌ATCC Arthrobacter atrocyaneus ATCC | 德国农田土壤German farmland soil | AMPA和CO2 AMPA and CO2 | 唯一P源Sole phosphorus source | |
黄杆菌属 GD1 Flavobacterium sp. GD1 | 孟山都活性污泥Monsanto’s sludge | AMPA和磷酸AMPA and phosphoric acid | 唯一P源Sole phosphorus source | |
溶钙芽孢杆菌T20 Geobacillus caldoxylosilyticus T20 | 水中Water | AMPA和乙醛酸AMPA and glyoxylic acid | 唯一P源Sole phosphorus source | |
赭杆菌 Ochrobactrum sp. GDOS | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
假单胞假单胞菌22 Pseudomonas pseudomallei 22 | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
假单胞菌 SG-1 Pseudomonas sp. SG-1 | 富氧液体Oxygen-rich liquid | AMPA | 唯一P源Sole phosphorus source | |
肌氨酸途Sarcosine pathway | 无色杆菌 MPK 7A Achromobacter sp. MPK 7A | 草甘膦污染土壤Glyphosate contaminated soil | 肌氨酸Sarcosine | 唯一P源Sole phosphorus source |
无色杆菌 MPS 12A Achromobacter sp. MPS 12A | AMPA污染土壤AMPA contaminated soil | 肌氨酸,甘氨酸, 甲醛Sarcosine, glycine and formaldehyde | 唯一P源Sole phosphorus source | |
放射土壤杆菌 Agrobacterium radiobacter | 污泥Sludge | AMPA | 唯一P源Sole phosphorus source | |
产碱菌 GL Alcaligenes sp. GL | 从非纯菌培养的产碱菌中分离Isolated from non-pure species of Alcaligenes | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
关节杆菌 GLP-1 Arthrobacter sp. GLP-1 | 被草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
阴沟肠杆菌K7 Enterobacter cloacae K7 | 植物根Root of plant | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
中间赭杆菌Sq20 Ochrobactrum intermedium Sq20 | 草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一C源Sole carbon source | |
假单胞菌 4ASW Pseudomonas sp. 4ASW | 草甘膦污染的土壤Glyphosate contaminated soil | 肌氨酸Sarcosine | 唯一P源Sole phosphorus source | |
假单胞菌 GLC11 Pseudomonas sp. GLC11 | 假单胞菌 1号的突变株Mutant strain of Pseudomonas sp. PAO1 | APMA | 唯一P源Sole phosphorus source | |
假单胞菌 PG2982 Pseudomonas sp. PG2982 | 铜绿假单胞菌ATCC 9027的突变株Mutant strain of Pseudomonas aeruginosa ATCC 9027 | 肌氨酸,磷酸,甘氨酸,甲醛Sarcosine, phosphoric acid, glycine and formaldehyde | 唯一P源Sole phosphorus source | |
苜蓿根瘤菌1021 Rhizobiaceae meliloti 1021 | 有链霉素抗性的苜蓿根瘤菌的突变株Mutant strain of Rhizobiaceae meliloti with streptomycin resisfance | 肌氨酸,甘氨酸Sarcosine and glycine | 唯一P源Sole phosphorus source | |
链霉菌 StC Streptomycete sp. StC | 污水处理厂的生污Sludge from sewage treatment plant | 肌氨酸,甘氨酸sarcosine and glycine | C源、N源或P源 Carbon, nitrogen or phosphorus source | |
青霉Penicillium sp. | 土壤Soil | AMPA | 唯一P源Sole phosphorus source | |
帚霉属Scopulariopsis sp. | 植物、昆虫体内Plants and insects | AMPA | 唯一P源Sole phosphorus source | |
木霉Trichoderma spp. | 柑橘及其他水果Citrus and other fruits | AMPA | 唯一P源Sole phosphorus source | |
曲霉Aspergillus spp. | 谷物及土壤Grains and soil | AMPA | N源和P源Nitrogen and phosphorus sources | |
双途径Both pathways | 蜡状芽孢杆菌CB4 Bacillus cereus CB4 | 动物肠道及污水Animal intestines and sewage | AMPA、乙醛酸、肌氨酸和甘氨酸AMPA, glyoxylic acid, sarcosine and glycine | C源和P源Carbon source and phosphorus source |
[1] | 杨益军, 张波, 吴江 . 全球( 中国) 草甘膦行业(市场)发展状况及2020年展望[J]. 农药市场信息, 2020(3):28-30. |
Yang YJ, Zhang B, Wu J. Global (China) glyphosate industry(market) development status and 2020 outlook[J]. Pesticide Market News, 2020(3):28-30. | |
[2] |
Pollegioni L, Schonbrunn E, Siehl D. Molecular basis of glyphosate resistance-different approaches through protein engineering[J]. FEBS Journal, 2011,278(16):2753-2766.
doi: 10.1111/j.1742-4658.2011.08214.x URL |
[3] |
Portier CJ, Armstrong BK, Baguley BC, et al. Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer(IARC)and the European Food Safety Authority(EFSA)[J]. Journal of Epidemiology and Community Health, 2016,70(8):741-745.
doi: 10.1136/jech-2015-207005 URL |
[4] | Ledoux ML, Hettiarachchy N, Yu X, et al. Penetration of glyphosate into the food supply and the incidental impact on the honey supply and bees[J]. Food Control, 2020. 109. |
[5] | Dai P, Yan Z, Ma , et al. The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro[J]. Journal of Agricultural & Food Chemistry, 2018,29(66):7786-7793. |
[6] |
Berg CJ, Peter KH, Glenda D, et al. Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees[J]. PLoS One, 2018,13(7):e0198876.
doi: 10.1371/journal.pone.0198876 URL |
[7] |
Cuhra M. Review of GMO safety assessment studies:glyphosate residues in Roundup Ready crops is an ignored issue[J]. Environmental Sciences Europe, 2015,27(1):1-14.
doi: 10.1186/s12302-014-0033-2 URL |
[8] |
Shehata AA, Wieland S, Philipp S, et al. Distribution of glyphosate in chicken organs and its reduction by humic acid supplementation[J]. Journal of Poultry Science, 2014,51(3):333-337.
doi: 10.2141/jpsa.0130169 URL |
[9] |
Shehata AA, Kühnert M, Haufe S, et al. Neutralization of the antimicrobial effect of glyphosate by humic acid in vitro[J]. Chemosphere, 2014,104:258-261.
doi: 10.1016/j.chemosphere.2013.10.064 pmid: 24268342 |
[10] |
Portier CJ, Bruce KA, Bruce C, et al. Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer(IARC)and the European Food Safety Authority(EFSA)[J]. Journal of Epidemiology and Community Health, 2016,70(8):741-745.
doi: 10.1136/jech-2015-207005 URL |
[11] |
Clair E, Linn L, Travert C, et al. Effects of roundup® and glyphosate on three food microorganisms:geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus[J]. Current Microbiology, 2012,64(5):486-491.
doi: 10.1007/s00284-012-0098-3 URL |
[12] |
Mesnage R, Antoniou MN. Facts and fallacies in the debate on glyphosate toxicity[J]. Frontiers in Public Health, 2017,5:316.
doi: 10.3389/fpubh.2017.00316 URL |
[13] |
Parvez S, Gerona RR, Proctor C, et al. Glyphosate exposure in pregnancy and shortened gestational length:a prospective Indiana birth cohort study[J]. Environmental Health, 2018,17(1):23.
doi: 10.1186/s12940-018-0367-0 URL |
[14] |
Gasnier C, Coralie D, Nora B, et al. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines[J]. Toxicology, 2009,262(3):184-191.
doi: 10.1016/j.tox.2009.06.006 pmid: 19539684 |
[15] | 食品安全国家标准. GB 2763-2019. 食品中农药最大残留限量[S]. 国家市场监督管理总局, 2019. |
National Food Safety Standard. GB 2763-2019. Maximum residue limits of pesticides in food[S]. State Administration for Market Regulation, 2019. | |
[16] | 张冬, 张宇, 王萌, 等. 草甘膦对植物生理影响的研究进展[J]. 热带农业科学, 2016(36):55-61. |
Zhang D, Zhang Y, Wang M, et al. Research progressin the effects of glyphosate on plant physiology[J]. Chinese Journal of Tropical Agriculture, 2016(36):55-61. | |
[17] | 江晶洁, 刘涛, 林双君. 基于莽草酸途径微生物合成芳香族化合物及其衍生物的研究进展[J]. 生命科学, 2019,31(5):430-448. |
Jiang JJ, Liu T, Liu SJ. Research progress on the biosynjournal of aromatic compounds by microorganisms[J]. Chinese Bulletin of Life Sciences, 2019,31(5):430-448. | |
[18] | 陈世国, 强胜, 毛婵娟. 草甘膦作用机制和抗性研究进展[J]. 植物保护, 2017,43(2):17-24. |
Chen SG, Qiang S, Mao CJ. Mechanism of action of glyphosate and research advances in glyphosate resistance[J]. Plant Protection, 2017,43(2):17-24. | |
[19] |
Pollegioni L, Schonbrunn E, Siehl D. Molecular basis of glyphosate resistance-different approaches through protein engineering[J]. FEBS Journal, 2011,278(16):2753-2766.
doi: 10.1111/j.1742-4658.2011.08214.x URL |
[20] |
Duke SO, Lydon J, Koskinen WC, et al. Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops[J]. Journal of Agricultural and Food Chemistry, 2012,60(42):10375-10397.
doi: 10.1021/jf302436u URL |
[21] | 张云彤, 王瑞楠, 孙墨楠, 等. 抗草甘膦转基因作物分子育种策略[J]. 生物技术, 2019,29(3):288-293, 307. |
Zhang YT, Wang RN, Sun MN, et al. Molecular breeding strategy for glyphosate resistant transgenic crops[J]. Biotechnology, 2019,29(3):288-293, 307. | |
[22] |
Hart MR, Brookes PC. Soil microbial biomass and mineralisation of soil organic matter after 19 years of cumulative field applications of pesticides[J]. Soil Biology & Biochemistry, 1996,28(12):1641-1649.
doi: 10.1016/S0038-0717(96)00249-0 URL |
[23] |
Powell JR, Levy-Booth DJ, Gulden RH, et al. Effects of genetically modified, Herbicide-tolerant crops and their management on soil food web properties and crop litter decomposition[J]. Journal of Applied Ecology, 2009,46(2):388-396.
doi: 10.1111/jpe.2009.46.issue-2 URL |
[24] |
Grandcoin A, Piel S, Baures E. Amino methyl phosphonic acid(AMPA)in natural waters:its sources, behavior and environmentalfate[J]. Water Research, 2017,117:187-197.
doi: S0043-1354(17)30245-2 pmid: 28391123 |
[25] | 陶波, 蒋凌雪, 沈晓峰, 等. 草甘膦对土壤微生物的影响[J]. 中国油料作物学报, 2011,33(2):162-168. |
Tao B, Jiang LX, Shen XF, et al. Effects of glyphosate on soil microorganisms[J]. Chinese Journal of Oil Crop Sciences, 2011,33(2):162-168. | |
[26] | 邓晓, 李雅琦. 草甘膦对土壤微生物影响的研究[J]. 农药, 2005(2):59-62. |
Deng X, Li YQ. Study on the effect of glyphosate on soil microorganisms[J]. Agrochemicals, 2005(2):59-62. | |
[27] |
Newman MM, Lorenz N, Hoilett N, et al. Changes in rhizosphere bacterial gene expression following glyphosate treatment[J]. The Science of the Total Environment, 2016,553(15):32-41.
doi: 10.1016/j.scitotenv.2016.02.078 URL |
[28] |
Zobiole LHS, Kremer RJ, Oliveira RS, et al. Glyphosate affects micro-organisms in rhizospheres of glyphosate-resistant soybeans[J]. J Appl Microbiol, 2011,110(1):118-127.
doi: 10.1111/jam.2010.110.issue-1 URL |
[29] |
Newman M, Nigel H, Nicola L, et al. Glyphosate effects on soil rhizosphere-associated bacterial communities[J]. Science of the Total Environment, 2016,543:155-160.
doi: 10.1016/j.scitotenv.2015.11.008 URL |
[30] |
Mandl K, Cantelmo C, Gruber E, et al. Effects of glyphosate-, glufosinate- and flazasulfuron-based herbicides on soil microorganisms in a vineyard[J]. Bulletin of Environmental Contamination and Toxicology, 2018,101(5):562-569.
doi: 10.1007/s00128-018-2438-x URL |
[31] | 陈望舒. 草甘膦对土壤生态的影响和毒理研究[D]. 扬州:扬州大学, 2019. |
Chen WS. Research on the effects of glyphosate on soil ecology and toxicology[D]. Yangzhou:Yangzhou University, 2019. | |
[32] | 吴雪楠, 孙菁菁, 罗园园, 等. 草甘膦对土壤微生物能量代谢的影响[J]. 化学与生物工程, 2016,33(4):18-21. |
Wu XN, Sun JJ, Luo YY, et al. Effect of glyphosate on energy metabolism of soil microorganisms[J]. Chemistry & Bioengineering, 2016,33(4):18-21. | |
[33] |
Liu Y, Li Y, Hua X, et al. Glyphosate application increased catabolic activity of gram-negative bacteria but impaired soil fungal community[J]. Environmental Science and Pollution Research, 2018,25(15):14762-14772.
doi: 10.1007/s11356-018-1676-0 URL |
[34] |
Berg J, Tom-Petersen A, Nybroe O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance[J]. Letters in Applied Microbiology, 2005,40(2):146-151.
doi: 10.1111/lam.2005.40.issue-2 URL |
[35] |
Jacobsen CS, Hjelms MH. Agricultural soils, pesticides and microbial diversity[J]. Current Opinion in Biotechnology, 2014,27:15-20.
doi: 10.1016/j.copbio.2013.09.003 pmid: 24863892 |
[36] | 刘慧璐. 抗草甘膦转基因大豆对土壤微生物和酶活性的影响[D]. 太原:山西大学, 2019. |
Liu HL. Effects of glyphosate-resistant transgenic soybean on soil microbe and enzyme activity[D]. Taiyuan:Shanxi University, 2019. | |
[37] | Druille M, Cabello MN, Omacini M, et al. Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi[J]. Applied Soil Ecology, 2013(64):99-103. |
[38] | Chakravarty P, Sidhu SS. Effect of glyphosate, hexazinone and triclopyr on in vitro growth of five species of ectomycorrhizal fungi[J]. European Journal of Forest Pathology, 1987,17(4-5):204-210. |
[39] | Braconi D, Sotgiu M, Millucci L, et al, Comparative analysis of the effects of locally used herbicides and their active ingredients on a wild-type wine Saccharomyces cerevisiae strain[J]. Journal of Agricultural & Food Chemistry, 2006(54):3163-3172. |
[40] |
Everett KDE, Dickerson HW. Ichthyophthirius multifiliis and tetrahymena thermophile tolerate glyphosate but not a commercial herbicidal formulation[J]. Bull Environ Contam Toxicol, 2003,70(4):731-738.
doi: 10.1007/s00128-003-0044-y URL |
[41] |
Shehata AA, Schrödl W, Aldin AA, et al. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro[J]. Current Microbiology, 2013,66(4):350-358.
doi: 10.1007/s00284-012-0277-2 pmid: 23224412 |
[42] |
Krüger M, Shehata AA, Schrodl W, et al. Glyphosate suppresses the antagonistic effect of Enterococcus spp. on Clostridium botulinum[J]. Anaerobe, 2013,20:74-78.
doi: 10.1016/j.anaerobe.2013.01.005 URL |
[43] | 王军华, 王易芬, 陈蕾蕾, 等. 除草剂草甘膦微生物降解技术研究进展[J]. 江苏农业科学, 2016,44(4):8-12. |
Wang JH, Wang YF, Chen LL, et al. Research progress in microbial degradation technology of herbicide glyphosate[J]. Jiangsu Agricultural Science, 2016,44(4):8-12. | |
[44] | Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation:a review[J]. Environ Manage, 2018,210:10-22. |
[45] |
Xiao Y, Chen S, Gao Y, et al. Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway[J]. Appl Microbiol Biotechnol, 2015,99:2849-2859.
doi: 10.1007/s00253-014-6164-y URL |
[46] |
Yu XM, Yu T, Yin GH. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15[J]. Genetics and Molecular Research, 2015,14(4):14717-14730.
doi: 10.4238/2015.November.18.37 pmid: 26600533 |
[47] |
Zhan H, Feng Y, Fan X, et al. Recent advances in glyphosate biodegradation[J]. Applied Microbiology and Biotechnology, 2018,102(12):5033-5043.
doi: 10.1007/s00253-018-9035-0 pmid: 29705962 |
[48] |
Forlani G, Mangiagalli A, Nielsen E, et al. Degradation of the phosphonate herbicide glyphosate in soil:evidence for a possible involvement of unculturable microorganisms[J]. Soil Biology and Biochemistry, 1999,31(7):991-997.
doi: 10.1016/S0038-0717(99)00010-3 URL |
[49] | Duke SO. Glyphosate degradation in glyphosate-resistant and -susceptible crops and weeds[J]. Journal of Agricultural & Food Chemistry, 2011,59(11):5835-5841. |
[50] | Moore JK, Braymer HD, Larson AD. Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate[J]. Applied & Environmental Microbiology, 1983,46(2):316-320. |
[51] |
Borggaard OK, Gimsing AL. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters:a review[J]. Pest Manag Sci, 2008,64(4):441-456.
pmid: 18161065 |
[52] |
Ermakova IT, Shushkova TV, Sviridov AV, et al. Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Ach-romobacter sp.[J]. Archives of Microbiology, 2017,199(5):665-675.
doi: 10.1007/s00203-017-1343-8 pmid: 28184965 |
[53] |
Mcauliffe KS, Hallas LE, Kulpa CF. Glyphosate degradation by agrobacterium radiobacterisolated from activated sludge[J]. Journal of Industrial Microbiology, 1990,6(3):219-221.
doi: 10.1007/BF01577700 URL |
[54] | Firdous S, Iqbal S, Anwar S, et al. Identification and analysis of 5-enolpyruvylshikimate-3-phosphate synthase(EPSPS)gene from glyphosate resistantr, ochrobactrum intermediumr, Sq20[J]. Pest Management Science, 2017(74):1184-1196. |
[1] | ZHANG Kun, YAN Chang, TIAN Xin-peng. Research Progress in Microbial Single Cell Separation Methods [J]. Biotechnology Bulletin, 2023, 39(9): 1-11. |
[2] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[3] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[4] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[5] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[6] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[7] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[8] | ZHANG Jing, ZHANG Hao-rui, CAO Yun, HUANG Hong-ying, QU Ping, ZHANG Zhi-ping. Research Progress in Thermophilic Microorganisms for Cellulose Degradation [J]. Biotechnology Bulletin, 2023, 39(6): 73-87. |
[9] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[10] | YU Yang, LIU Tian-hai, LIU Li-xu, TANG Jie, PENG Wei-hong, CHEN Yang, TAN Hao. Study on Aerosol Microbial Community in the Production Workshop of Morel Spawn [J]. Biotechnology Bulletin, 2023, 39(5): 267-275. |
[11] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[12] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[13] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[14] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
[15] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||