Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (9): 266-273.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0015
Previous Articles Next Articles
HU Xiu-wen1(), LIU Hua2,4, WANG Yu3, TANG Xue-ming1,5(), WANG Jin-bin2,4, ZENG Hai-juan2,4, JIANG Wei2,4, LI Hong6
Received:
2021-01-04
Online:
2021-09-26
Published:
2021-10-25
Contact:
TANG Xue-ming
E-mail:849727644@qq.com;xueming70@foxmail.com
HU Xiu-wen, LIU Hua, WANG Yu, TANG Xue-ming, WANG Jin-bin, ZENG Hai-juan, JIANG Wei, LI Hong. Application of CRISPR-Cas System in Nucleic Acid Detection[J]. Biotechnology Bulletin, 2021, 37(9): 266-273.
效应物 Effector | 结构域 Domain | 向导RNA SgRNA | PAM/PFS | 检测平台 Detection platform | 靶向目标 Target type | 信号放大方法 Signal amplification | 灵敏性 Sensitivity | 多路复用 Multiplex | 定量 Quantitative | 便携性 Portable | 时间 Time/h |
---|---|---|---|---|---|---|---|---|---|---|---|
Cas9 | HNH RuvC | tracrRNA | 5'NGG | 无 | DNA | CAS-EXPAR | aM | 无 | 无 | 是 | <1 |
crRNA | |||||||||||
Cas12a Cas12b | RuvC | crRNA | 5'TTN | HOLMES | DNA | PCR; RT-PCR;RPA | aM | 无 | 无 | 否 | 1 |
DETECTR | aM | 无 | 无 | 是 | 1 | ||||||
HOLMESv2 | DNA | LAMP; RT-LAMP | aM | 无 | 有 | 是 | 1 | ||||
Cas13a | HEPN | crRNA | 3'A、U 或C | SHERLOCK | RNA | RPA | aM | 无 | 无 | 是 | 2 |
Cas14 | RuvC | tracrRNA crRNA | 无 | DETECTR | ssDNA | RPA | aM | 无 | 无 | 是 | 1 |
Table 1 Comparison of CRISPR detection system
效应物 Effector | 结构域 Domain | 向导RNA SgRNA | PAM/PFS | 检测平台 Detection platform | 靶向目标 Target type | 信号放大方法 Signal amplification | 灵敏性 Sensitivity | 多路复用 Multiplex | 定量 Quantitative | 便携性 Portable | 时间 Time/h |
---|---|---|---|---|---|---|---|---|---|---|---|
Cas9 | HNH RuvC | tracrRNA | 5'NGG | 无 | DNA | CAS-EXPAR | aM | 无 | 无 | 是 | <1 |
crRNA | |||||||||||
Cas12a Cas12b | RuvC | crRNA | 5'TTN | HOLMES | DNA | PCR; RT-PCR;RPA | aM | 无 | 无 | 否 | 1 |
DETECTR | aM | 无 | 无 | 是 | 1 | ||||||
HOLMESv2 | DNA | LAMP; RT-LAMP | aM | 无 | 有 | 是 | 1 | ||||
Cas13a | HEPN | crRNA | 3'A、U 或C | SHERLOCK | RNA | RPA | aM | 无 | 无 | 是 | 2 |
Cas14 | RuvC | tracrRNA crRNA | 无 | DETECTR | ssDNA | RPA | aM | 无 | 无 | 是 | 1 |
[1] |
Yan L, Zhou J, Zheng Y, et al. Isothermal amplified detection of DNA and RNA[J]. Mol Biosyst, 2014, 10(5):970-1003.
doi: 10.1039/c3mb70304e URL |
[2] |
Mukama O, Nie C, Habimana JD, et al. Synergetic performance of isothermal amplification techniques and lateral flow approach for nucleic acid diagnostics[J]. Anal Biochem, 2020, 600:113762.
doi: S0003-2697(20)30294-3 pmid: 32387190 |
[3] |
Lobato IM, O’Sullivan CK. Recombinase polymerase amplification:Basics, applications and recent advances[J]. Trends Analyt Chem, 2018, 98:19-35.
doi: 10.1016/j.trac.2017.10.015 URL |
[4] |
Hu B, Guo J, et al. A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology[J]. Anal Bioanal Chem, 2017, 409(20):4819-4825.
doi: 10.1007/s00216-017-0425-4 URL |
[5] | 方凯伦, 杨辉. CRISPR/Cas工具的开发和应用[J]. 科学通报, 2020, 65(11):973-990. |
Fang KL, Yang H. Advances and applications of CRISPR/Cas toolbox[J]. Chin Sci Bull, 2020, 65(11):973-990. | |
[6] | 杨春艳, 王磊, 穆登彩, 等. 基因编辑技术在疾病治疗中的研究进展[J]. 中国生物工程杂志, 2019, 39(11):87-95. |
Yang CY, Wang L, Mu DC, et al. Advances of gene editing in disease treatment[J]. China Biotechnol, 2019, 39(11):87-95. | |
[7] | Ishino Y, Krupovic M, Forterre P. History of CRISPR-cas from encounter with a mysterious repeated sequence to genome editing technology[J]. J Bacteriol, 2018, 200(7):e00580-17. |
[8] |
Marraffini LA. CRISPR-Cas immunity in prokaryotes[J]. Nature, 2015, 526(7571):55-61.
doi: 10.1038/nature15386 URL |
[9] |
Morange M. What history tells us XXXVII. CRISPR-Cas:The discovery of an immune system in prokaryotes[J]. J Biosci, 2015, 40(2):221-223.
doi: 10.1007/s12038-015-9532-6 URL |
[10] |
Shen J, Zhou X, et al. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction[J]. Nat Commun, 2020, 11(1):267.
doi: 10.1038/s41467-019-14135-9 URL |
[11] |
Aquino-Jarquin G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic[J]. Nanomedicine, 2019, 18:428-431.
doi: S1549-9634(19)30068-1 pmid: 30935995 |
[12] | 李佰伦, 黄书琴, 王奕众. CRISPR/Cas系统的研究进展及前沿应用[J]. 生命的化学, 2020, 40(1):16-24. |
Li BL, Huang SQ, Wang YZ. Development and frontier application of CRISPR/Cas system[J]. Chem Life, 2020, 40(1):16-24. | |
[13] |
Aman R, Mahas A, Mahfouz M. Nucleic acid detection using CRISPR/cas biosensing technologies[J]. ACS Synth Biol, 2020, 9(6):1226-1233.
doi: 10.1021/acssynbio.9b00507 URL |
[14] |
Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nat Rev Microbiol, 2017, 15(3):169-182.
doi: 10.1038/nrmicro.2016.184 pmid: 28111461 |
[15] |
Zhang Y, Malzahn AA, Sretenovic S, et al. The emerging and uncultivated potential of CRISPR technology in plant science[J]. Nat Plants, 2019, 5(8):778-794.
doi: 10.1038/s41477-019-0461-5 URL |
[16] |
Yan WX, Hunnewell P, et al. Functionally diverse type V CRISPR-Cas systems[J]. Science, 2019, 363(6422):88-91.
doi: 10.1126/science.aav7271 URL |
[17] |
Savage DF. Cas14:big advances from small CRISPR proteins[J]. Biochemistry, 2019, 58(8):1024-1025.
doi: 10.1021/acs.biochem.9b00035 pmid: 30740978 |
[18] |
Yan F, Wang W, Zhang J. CRISPR-Cas12 and Cas13:the lesser known siblings of CRISPR-Cas9[J]. Cell Biol Toxicol, 2019, 35(6):489-492.
doi: 10.1007/s10565-019-09489-1 URL |
[19] | 史铠, 雷春阳, 聂舟. CRISPR/Cas技术在核酸检测中的应用进展[J]. 分析测试学报, 2018, 37(10):1217-1220. |
Shi K, Lei CY, Nie Z. Application progress of CRISPR/cas in nucleic acid detection[J]. J Instrum Anal, 2018, 37(10):1217-1220. | |
[20] |
Yamano T, Zetsche B, Ishitani R, et al. Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1[J]. Mol Cell, 2017, 67(4):633-645.e3.
doi: 10.1016/j.molcel.2017.06.035 URL |
[21] |
Müller V, Rajer F, Frykholm K, et al. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping[J]. Sci Rep, 2016, 6:37938.
doi: 10.1038/srep37938 URL |
[22] |
Guk K, Keem JO, Hwang SG, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex[J]. Biosens Bioelectron, 2017, 95:67-71.
doi: 10.1016/j.bios.2017.04.016 URL |
[23] |
Zhang Y, Qian L, et al. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains[J]. ACS Synth Biol, 2017, 6(2):211-216.
doi: 10.1021/acssynbio.6b00215 URL |
[24] |
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387):436-439.
doi: 10.1126/science.aar6245 |
[25] |
Li SY, Cheng QX, Wang JM, et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discov, 2018, 4:20.
doi: 10.1038/s41421-018-0028-z URL |
[26] |
Petri K, et al. SHERLOCK and DETECTR open a new frontier in molecular diagnostics[J]. Crispr J, 2018, 1:209-211.
doi: 10.1089/crispr.2018.29018.kpe pmid: 31021254 |
[27] |
Liu H, Wang JB, Zeng HJ, et al. RPA-Cas12a-FS:a frontline nucleic acid rapid detection system for food safety based on CRISPR-Cas12a combined with recombinase polymerase amplification[J]. Food Chem, 2021, 334:127608.
doi: 10.1016/j.foodchem.2020.127608 URL |
[28] |
Batista AC, Pacheco LGC. Detecting pathogens with Zinc-Finger, TALE and CRISPR-based programmable nucleic acid binding proteins[J]. J Microbiol Methods, 2018, 152:98-104.
doi: S0167-7012(18)30393-2 pmid: 30076867 |
[29] |
Wang Y, Ke Y, Liu W, et al. A one-pot toolbox based on Cas12a/crRNA enables rapid foodborne pathogen detection at attomolar level[J]. ACS Sens, 2020, 5(5):1427-1435.
doi: 10.1021/acssensors.0c00320 URL |
[30] |
Du YC, Wang SY, Wang YX, et al. Terminal deoxynucleotidyl transferase combined CRISPR-Cas12a amplification strategy for ultrasensitive detection of uracil-DNA glycosylase with zero background[J]. Biosens Bioelectron, 2021, 171:112734.
doi: 10.1016/j.bios.2020.112734 URL |
[31] | Li CY, Zheng B, Li JT, et al. Holographic optical tweezers and boosting upconversion luminescent resonance energy transfer combined clustered regularly interspaced short palindromic repeats(CRISPR)/Cas12a biosensors[J]. ACS Nano, 2021. |
[32] |
Strecker J, Jones S, et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nat Commun, 2019, 10(1):212.
doi: 10.1038/s41467-018-08224-4 URL |
[33] |
Li L, Li S, Wu N, et al. HOLMESv2:a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation[J]. ACS Synth Biol, 2019, 8(10):2228-2237.
doi: 10.1021/acssynbio.9b00209 URL |
[34] |
Mukama O, et al. An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids[J]. Biosens Bioelectron, 2020, 159:112143.
doi: S0956-5663(20)30141-X pmid: 32364943 |
[35] | 陈敏洁, 唐桂月, 等. 基于CRISPR-Cas13家族的RNA编辑系统及其最新进展[J]. 生物技术通报, 2020, 36(3):1-8. |
Chen MJ, Tang GY, Hong XN, et al. Research progress on CRISPR-Cas13-mediated RNA editing system[J]. Biotechnol Bull, 2020, 36(3):1-8. | |
[36] |
Ali Z, Mahas A, Mahfouz M. CRISPR/Cas13 as a tool for RNA interference[J]. Trends Plant Sci, 2018, 23(5):374-378.
doi: 10.1016/j.tplants.2018.03.003 URL |
[37] | Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):aaf5573. |
[38] |
Hadidi A. Next-generation sequencing and CRISPR/Cas13 editing in viroid research and molecular diagnostics[J]. Viruses, 2019, 11(2). DOI: 10.3390/v11020120.
doi: 10.3390/v11020120 |
[39] |
Hosaka T, Yamashita T, Teramoto S, et al. ADAR2-dependent A-to-I RNA editing in the extracellular linear and circular RNAs[J]. Neurosci Res, 2019, 147:48-57.
doi: 10.1016/j.neures.2018.11.005 URL |
[40] |
Kellner MJ, et al. SHERLOCK:nucleic acid detection with CRISPR nucleases[J]. Nat Protoc, 2019, 14(10):2986-3012.
doi: 10.1038/s41596-019-0210-2 pmid: 31548639 |
[41] |
Myhrvold C, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387):444-448.
doi: 10.1126/science.aas8836 pmid: 29700266 |
[42] |
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336):438-442.
doi: 10.1126/science.aam9321 pmid: 28408723 |
[43] |
Cui Y, Fan S, Yuan Z, et al. Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly[J]. Talanta, 2021, 224:121878.
doi: 10.1016/j.talanta.2020.121878 URL |
[44] |
Khan H, Khan A, Liu Y, et al. CRISPR-Cas13a mediated nanosystem for attomolar detection of canine parvovirus type 2[J]. Chin Chem Lett, 2019, 30(12):2201-2204.
doi: 10.1016/j.cclet.2019.10.032 URL |
[45] |
Wu Y, Liu SX, Wang F, et al. Room temperature detection of plasma Epstein-Barr virus DNA with CRISPR-Cas13[J]. Clin Chem, 2019, 65(4):591-592.
doi: 10.1373/clinchem.2018.299347 URL |
[46] |
Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387):439-444.
doi: 10.1126/science.aaq0179 pmid: 29449508 |
[47] |
Niewoehner O, Jinek M. Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6[J]. RNA, 2016, 22(3):318-329.
doi: 10.1261/rna.054098.115 pmid: 26763118 |
[48] |
Aquino-Jarquin G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic[J]. Nanomedicine, 2019, 18:428-431.
doi: S1549-9634(19)30068-1 pmid: 30935995 |
[49] |
Yin K, Ding X, Li ZY, et al. Dynamic aqueous multiphase reaction system for one-pot CRISPR-Cas12a-based ultrasensitive and quantitative molecular diagnosis[J]. Anal Chem, 2020, 92(12):8561-8568.
doi: 10.1021/acs.analchem.0c01459 URL |
[50] |
Wang RX, Zhao XX, et al. Rolling Circular Amplification(RCA)-Assisted CRISPR/Cas9 Cleavage(RACE)for Highly Specific Detection of Multiple Extracellular Vesicle MicroRNAs[J]. Analytical Chemistry, 2020, 92(2):2176-2185.
doi: 10.1021/acs.analchem.9b04814 URL |
[51] |
Pardee K, Green AA, Takahashi MK, et al. Rapid, low-cost detection of zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5):1255-1266.
doi: S0092-8674(16)30505-0 pmid: 27160350 |
[52] |
Wang X, Xiong E, Tian T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay[J]. ACS Nano, 2020, 14(2):2497-2508.
doi: 10.1021/acsnano.0c00022 URL |
[53] |
Yuan C, Tian T, Sun J, et al. Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system[J]. Anal Chem, 2020, 92(5):4029-4037.
doi: 10.1021/acs.analchem.9b05597 URL |
[54] |
Nouri R, Jiang Y, Lian XL, et al. Sequence-specific recognition of HIV-1 DNA with solid-state CRISPR-cas12a-assisted nanopores(SCAN)[J]. ACS Sens, 2020, 5(5):1273-1280.
doi: 10.1021/acssensors.0c00497 URL |
[55] |
Dai YF, Somoza RA, Wang L, et al. Exploring the trans-cleavage activity of CRISPR-Cas12a(cpf1)for the development of a universal electrochemical biosensor[J]. Angew Chem Int Ed, 2019, 58(48):17399-17405.
doi: 10.1002/anie.v58.48 URL |
[56] |
Sanche S, Lin YT, Xu CG, et al. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2[J]. Emerg Infect Dis, 2020, 26(7):1470-1477.
doi: 10.3201/eid2607.200282 URL |
[57] |
Broughton JP, Deng XD, et al. CRISPR-Cas12-based detection of SARS-CoV-2[J]. Nat Biotechnol, 2020, 38(7):870-874.
doi: 10.1038/s41587-020-0513-4 pmid: 32300245 |
[58] | Broughton JP, Deng XD, Yu GX, et al. Rapid detection of 2019 novel coronavirus SARS-CoV-2 using a CRISPR-based DETECTR lateral flow assay[J]. medRxiv, 2020. |
[59] | Wang X, Zhong M, Liu Y, et al. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER[J]. Sci Bull:Beijing, 2020, 65(17):1436-1439. |
[60] |
Xiang XH, Qian KL, Zhang Z, et al. CRISPR-cas systems based molecular diagnostic tool for infectious diseases and emerging 2019 novel coronavirus(COVID-19)pneumonia[J]. J Drug Target, 2020, 28(7/8):727-731.
doi: 10.1080/1061186X.2020.1769637 URL |
[61] | A protocol for detection of COVID-19 using CRISPR diagnostics[EB/OL]. https://www.broadinstitute.org/files/publications/special/COVID-19%20detection%20. |
[62] | 许金和, 王水良, 张胜行, 等. 新型冠状病毒核酸检测方法[J]. 国际检验医学杂志, 2020, 41(17):2138-2142. |
Xu JH, Wang SL, Zhang SX, et al. Methods for nucleic acid detection of 2019 novel coronavirus[J]. International Journal of Laboratory Medicine, 2020, 41(17):2138-2142. | |
[63] |
Arizti-Sanz J, Freije CA, Stanton AC, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2[J]. Nat Commun, 2020, 11:5921.
doi: 10.1038/s41467-020-19097-x pmid: 33219225 |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[3] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[4] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[5] | LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing [J]. Biotechnology Bulletin, 2022, 38(6): 1-12. |
[6] | ZHANG Hao, LI Zhe, GUO Kai, HUANG Yan-hua, HAO Yong-ren. Functional Analysis of TvGCN5 Gene Encoding Histone Acetylase from Trichoderma viride Tv-1511 [J]. Biotechnology Bulletin, 2022, 38(5): 136-148. |
[7] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
[8] | HUANG Yao-hui, JIAO Yue, FU Zhong-wen. Overview and Progress of Japan Safety Management System of Genetically Modified Crops [J]. Biotechnology Bulletin, 2021, 37(3): 99-106. |
[9] | ZUO Ling-li, ZHOU Li-ting, WU Xing-qi, WU Chao-yi, WU Shu-yan. Construction of spvBC Gene Editing Strains of Salmonella typhimurium [J]. Biotechnology Bulletin, 2021, 37(2): 253-260. |
[10] | WANG Kai-kai, WANG Xiao-lu, SU Xiao-yun, ZHANG Jie. Optimization and Application of Double-plasmid CRISPR-Cas9 System in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(12): 252-264. |
[11] | LIU Jia, WEI Jia-qi, LIU Yu-qin, SHI Ge-ge, GUO Jing. Research on Evolution of Gene Editing Technology Based on Patent Analysis and Social Network Analysis [J]. Biotechnology Bulletin, 2021, 37(12): 274-284. |
[12] | YUE Peng-peng, GUO Jun-fan, YU Hong-hao, FU Can, WANG Xiao-yan, GAO Jin-tao. Efficient Editing of Mouse Galt Gene Based on CRISPR/cas9 System [J]. Biotechnology Bulletin, 2020, 36(8): 235-342. |
[13] | ZHAO Xu-dong, HUANG Yong-zhi, BI Yan-zhen, DONG Fa-ming. Strategies for Efficient Exogenous Gene Expression in Transgenic Animals [J]. Biotechnology Bulletin, 2020, 36(3): 45-53. |
[14] | SONG Shao-zheng, LU Rui, ZHANG Ting, HE Zheng-yi, WU Zhao-manqiu, CHENG Yong, ZHOU Ming-ming. Research Progress of CRISPR /Cas9 Gene Editing Technology in Goat and Sheep [J]. Biotechnology Bulletin, 2020, 36(3): 62-68. |
[15] | LI Shu-lei, ZHENG Hong-yan, WANG Lei. Application and Prospect of Gene Editing Technology in Crop Breeding [J]. Biotechnology Bulletin, 2020, 36(11): 209-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||