Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (2): 253-260.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0619
Previous Articles Next Articles
ZUO Ling-li1,2(), ZHOU Li-ting1, WU Xing-qi1, WU Chao-yi1, WU Shu-yan1()
Received:
2020-05-22
Online:
2021-02-26
Published:
2021-02-26
Contact:
WU Shu-yan
E-mail:739016526@qq.com;wushuyan@suda.edu.cn
ZUO Ling-li, ZHOU Li-ting, WU Xing-qi, WU Chao-yi, WU Shu-yan. Construction of spvBC Gene Editing Strains of Salmonella typhimurium[J]. Biotechnology Bulletin, 2021, 37(2): 253-260.
Primer name | Primer sequence(5'-3') |
---|---|
H1P1 | CAGAAAATATACCTGGCCATCGTCAG ACGGCCAGTTTCAGGAGATAGTGTGT GTAGGCTGGAGCTGCTTC |
H2P2 | AAATAGCTGTTTAACGGCGTTTACTG TTCCGTTGCTCCCCAAACCCATACAT GGGAATTAGCCATGGTCC |
P3 | ACTTTTGAACAGGCCGTAGAGC |
P4 | TGCGGACATATCAATATGCATGAG |
spvBC-F(Xho I) | CCTCGAGTTGATACTAAATGGTTTTTC |
spvBC-R(EcoR I) | GGAATTCCCTCTGTCATCAAACGATAAA |
Primer name | Primer sequence(5'-3') |
---|---|
H1P1 | CAGAAAATATACCTGGCCATCGTCAG ACGGCCAGTTTCAGGAGATAGTGTGT GTAGGCTGGAGCTGCTTC |
H2P2 | AAATAGCTGTTTAACGGCGTTTACTG TTCCGTTGCTCCCCAAACCCATACAT GGGAATTAGCCATGGTCC |
P3 | ACTTTTGAACAGGCCGTAGAGC |
P4 | TGCGGACATATCAATATGCATGAG |
spvBC-F(Xho I) | CCTCGAGTTGATACTAAATGGTTTTTC |
spvBC-R(EcoR I) | GGAATTCCCTCTGTCATCAAACGATAAA |
[1] |
Miller EA, Elnekave E, Flores-Figueroa C, et al. Emergence of a novel Salmonella enterica serotype reading clonal group is linked to its expansion in commercial turkey production, resulting in unanticipated human illness in north America[J]. mSphere, 2020,5(2):e00056-20.
doi: 10.1128/mSphere.00056-20 URL pmid: 32295868 |
[2] |
Ao TT, Feasey NA, Gordon MA, et al. Global burden of invasive nontyphoidal Salmonella disease, 2010(1)[J]. Emerging Infectious Diseases, 2015,21(6):941-949.
doi: 10.3201/eid2106.140999 URL |
[3] |
Keestra-Gounder AM, Tsolis RM, Baumler AJ. Now you see me, now you don’t:the interaction of Salmonella with innate immune receptors[J]. Nat Rev Microbiol, 2015,13(4):206-216.
doi: 10.1038/nrmicro3428 URL |
[4] | 李艳, 张晓蕾, 李金平, 等. 2013-2017年感染性腹泻的病原体特点和流行特征[J]. 中华医院感染学杂志, 2019,29(11):1732-1736. |
Li Y, Zhang XL, Li JP, et al. Etiological and epidemiological characteristics of with infections diarrhea in a hospital from 2013 to 2017[J]. Chinese Journal of Nosocomiology, 2019,29(11):1732-1736. | |
[5] |
Lopes GV, Pissetti C, da Cruz Payao Pellegrini D, et al. Resistance phenotypes and genotypes of Salmonella enterica subsp. enterica isolates from feed, pigs, and carcasses in Brazil[J]. Journal of Food Protection, 2015,78(2):407-413.
doi: 10.4315/0362-028X.JFP-14-274 URL pmid: 25710159 |
[6] |
Karki R, Lee E, et al. IRF8 regulates transcription of Naips for NLR-C4 inflammasome activation[J]. Cell, 2018,173(4):920-933.
URL pmid: 29576451 |
[7] |
Laughlin RC, Knodler LA, et al. Spatial segregation of virulence gene expression during acute enteric infection with Salmonella ent-erica serovar Typhimurium[J]. mBio, 2014,5(1):e00946-13.
doi: 10.1128/mBio.00946-13 URL pmid: 24496791 |
[8] |
Passaris I, Cambre A, Govers SK, et al. Bimodal expression of the Salmonella Typhimurium spv operon[J]. Genetics, 2018,210(2):621-635.
URL pmid: 30143595 |
[9] |
Tezcan-Merdol D, Nyman T, Lindberg U, et al. Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB[J]. Molecular Microbiology, 2001,39(3):606-619.
doi: 10.1046/j.1365-2958.2001.02258.x URL pmid: 11169102 |
[10] |
Tezcan-Merdol D, Engstrand L, Rhen M. Salmonella enterica SpvB-mediated ADP-ribosylation as an activator for host cell actin degradation[J]. Int J Med Microbiol, 2005,295(4):201-212.
doi: 10.1016/j.ijmm.2005.04.008 URL pmid: 16128395 |
[11] |
Miao EA, Brittnacher M, Haraga A, et al. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton[J]. Mol Microbiol, 2003,48(2):401-415.
doi: 10.1046/j.1365-2958.2003.t01-1-03456.x URL pmid: 12675800 |
[12] |
Chu Y, Gao S, Wang T, et al. A novel contribution of spvB to pathogenesis of Salmonella Typhimurium by inhibiting autophagy in host cells[J]. Oncotarget, 2016,7(7):8295-8309.
doi: 10.18632/oncotarget.6989 URL pmid: 26811498 |
[13] |
Mazurkiewicz P, Thomas J, Thompson JA, et al. SpvC is a Salmo-nella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases[J]. Mol Microbiol, 2008,67(6):1371-1383.
URL pmid: 18284579 |
[14] |
Haneda T, Ishii Y, Shimizu H, et al. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection[J]. Cellular Microbiology, 2012,14(4):485-499.
doi: 10.1111/j.1462-5822.2011.01733.x URL pmid: 22188134 |
[15] |
Hou M, Sun S, et al. Genetic editing of the virulence gene of Escherichia coli using the CRISPR system[J]. PeerJ, 2020,8:e8881.
doi: 10.7717/peerj.8881 URL pmid: 32292652 |
[16] |
Dillingham MS, Kowalczykowski SC. RecBCD enzyme and the repair of double-stranded DNA breaks[J]. Microbiology and molecular biology reviews:MMBR, 2008,72(4):642-671.
doi: 10.1128/MMBR.00020-08 URL pmid: 19052323 |
[17] |
Munoz-Jimenez C, Ayuso C, et al. An efficient FLP-based toolkit for spatiotemporal control of gene expression in Caenorhabditis elegans[J]. Genetics, 2017,206(4):1763-1778.
URL pmid: 28646043 |
[18] | 南亚萍, 周国标, 袁林江. 多聚磷酸盐激酶基因在污水生物除磷中的功能[J]. 环境科学, 2017,38(4):1529-1535. |
Nan YP, Zhou GB, Yuan LJ. Function of polyphosphate kinase gene in biological phosphate removal during the wastewater treatment process[J]. Environmental Science, 2017,38(4):1529-1535.
doi: 10.1021/es034450d URL |
|
[19] |
Copeland NG, Jenkins NA, Court DL. Recombineering:a powerful new tool for mouse functional genomics[J]. Nature Reviews Genetics, 2001,2(10):769-779.
doi: 10.1038/35093556 URL pmid: 11584293 |
[20] |
Szeliova D, Krahulec J, Safranek M, et al. Modulation of heterologous expression from PBAD promoter in Escherichia coli production strains[J]. Journal of Biotechnology, 2016,236:1-9.
doi: 10.1016/j.jbiotec.2016.08.004 URL pmid: 27498315 |
[21] | 邵哲旭, 李芊, 边春象, 等. 大肠杆菌TOP10F’中重组质粒pBAD/gⅢA-NTF2稳定性考察[J]. 绵阳师范学院学报, 2010,29(2):79-83. |
Shao ZX, Li QQ, Bian CX, et al. Study on the stablity of recombinant plasmid pBAD/ gⅢA-NTF2 in Escherichia coli TOP 10F' strain[J]. Journal of Mianyang Normal University, 2010,29(2):79-83. | |
[22] | 武有聪, 孟媛媛, 丁百兴, 等. 以质粒为基础的同源重组技术在葡萄球菌基因敲除中的应用[J]. 中国人兽共患病学报, 2019,35(7):581-586. |
Wu YC, Meng YY, Ding BX, et al. Application of plasmid-based allelic replacement in the gene deletion of Staphylococcus[J]. Chinese Journal of Zoonoses, 2019,35(7):581-586. | |
[23] |
Liao SW, Lee JJ, Ptak CP, et al. Effects of L-arabinose efflux on lambda Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis[J]. Arch Microbiol, 2018,200(2):219-225.
doi: 10.1007/s00203-017-1436-4 URL pmid: 28975374 |
[24] | Murphy KC. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli[J]. Journal of Bacteriology, 1998,180(8):2063-2071. |
[25] |
Doublet B, Douard G, Targant H, et al. Antibiotic marker modifications of lambda Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR products in multidrug-resistant strains[J]. Journal of Microbiological Methods, 2008,75(2):359-361.
doi: 10.1016/j.mimet.2008.06.010 URL pmid: 18619499 |
[26] | 高嵩, 燕婧, 储元元, 等. λRed重组系统用于沙门菌质粒毒力基因spvC敲除株的构建[J]. 生物技术, 2016,26(4):367-371. |
Gao S, Yan J, Chu YY, et al. Construction of Salmonella mutant with spvC gene knockout by λRed recombination system[J]. Biotechnology, 2016,26(4):367-371. | |
[27] | 付喜爱, 张德显, 周维, 等. 细菌λ Red重组技术的应用及其影响因素[J]. 动物医学进展, 2015,36(1):91-95. |
Fu XA, Zhang DX, Zhou W, et al. Application of λRed recombination in bacteria and analysis of influencing factors[J]. Progress in Veterinary Medicine, 2015,36(1):91-95. | |
[28] |
Yu D, Ellis HM, Lee EC, et al. An efficient recombination system for chromosome engineering in Escherichia coli[J]. PNAS, 2000,97(11):5978-5983.
doi: 10.1073/pnas.100127597 URL pmid: 10811905 |
[29] | 王仁霞, 刘荣娇, 李子微, 等. 两步PCR介导的Red重组技术快速敲除鼠疫耶尔森菌sRNA及染色体大片段[J]. 微生物学报, 2017,57(7):1126-1137. |
Wang RX, Liu RJ, Li ZW, et al. Two-step PCR mediated Red recombination technique for rapid deletion of Yersinia pestis sRNA and large fragment chromosome[J]. Acta Microbiologica Sinica, 2017,57(7):1126-1137. | |
[30] | Peng Z, Wei X, Lin Z. Stable surface expression of a gene for Helicobacter pylori toxic porin protein with pBAD expression system[J]. Journal of Huazhong University of Science and Technology Medical Sciences, 2009,29(4):435-438. |
[31] | 司微, 刘慧芳, 等. 利用Red重组系统敲除大肠杆菌菌株ClpP基因方法的研究[J]. 黑龙江畜牧兽医, 2011, ( 15):28-30. |
Si W, Liu HF, et al. The research on the deletion of ClpP gene in chromosome of E. coli by Red recombination system[J]. Heilong-jiang Animal Science and Veterinary Medicine, 2011, ( 15):28-30. | |
[32] |
Schulte LN, Schweinlin M, Westermann AJ, et al. An advanced human intestinal coculture model reveals compartmentalized host and pathogen strategies during Salmonella infection[J]. mBio, 2020,11(1):e03348-19.
doi: 10.1128/mBio.03348-19 URL pmid: 32071273 |
[33] |
Yang SD, Deng QF, Sun LQ, et al. Salmonella effector SpvB interferes with intracellular iron homeostasis via regulation of transcription factor NRF2[J]. FASEB J, 2019,33(12):13450-13464.
doi: 10.1096/fj.201900883RR URL pmid: 31569998 |
[34] |
Gopinath A, Allen TA, Bridgwater CJ, et al. The Salmonella type III effector SpvC triggers the reverse transmigration of infected cells into the bloodstream[J]. PLoS One, 2019,14(12):e0226126.
doi: 10.1371/journal.pone.0226126 URL pmid: 31815949 |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[3] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[4] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[5] | LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing [J]. Biotechnology Bulletin, 2022, 38(6): 1-12. |
[6] | ZHANG Hao, LI Zhe, GUO Kai, HUANG Yan-hua, HAO Yong-ren. Functional Analysis of TvGCN5 Gene Encoding Histone Acetylase from Trichoderma viride Tv-1511 [J]. Biotechnology Bulletin, 2022, 38(5): 136-148. |
[7] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
[8] | WANG Zi-yan, WANG Jian, ZHANG Lun, GUI Shui-qing, LU Xue-mei. Study on Antibacterial Stability of Musca domestica Cecropin-MDC Against Salmonella typhimurium [J]. Biotechnology Bulletin, 2022, 38(3): 149-156. |
[9] | HU Xiu-wen, LIU Hua, WANG Yu, TANG Xue-ming, WANG Jin-bin, ZENG Hai-juan, JIANG Wei, LI Hong. Application of CRISPR-Cas System in Nucleic Acid Detection [J]. Biotechnology Bulletin, 2021, 37(9): 266-273. |
[10] | HUANG Yao-hui, JIAO Yue, FU Zhong-wen. Overview and Progress of Japan Safety Management System of Genetically Modified Crops [J]. Biotechnology Bulletin, 2021, 37(3): 99-106. |
[11] | WANG Kai-kai, WANG Xiao-lu, SU Xiao-yun, ZHANG Jie. Optimization and Application of Double-plasmid CRISPR-Cas9 System in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(12): 252-264. |
[12] | LIU Jia, WEI Jia-qi, LIU Yu-qin, SHI Ge-ge, GUO Jing. Research on Evolution of Gene Editing Technology Based on Patent Analysis and Social Network Analysis [J]. Biotechnology Bulletin, 2021, 37(12): 274-284. |
[13] | YUE Peng-peng, GUO Jun-fan, YU Hong-hao, FU Can, WANG Xiao-yan, GAO Jin-tao. Efficient Editing of Mouse Galt Gene Based on CRISPR/cas9 System [J]. Biotechnology Bulletin, 2020, 36(8): 235-342. |
[14] | ZHAO Xu-dong, HUANG Yong-zhi, BI Yan-zhen, DONG Fa-ming. Strategies for Efficient Exogenous Gene Expression in Transgenic Animals [J]. Biotechnology Bulletin, 2020, 36(3): 45-53. |
[15] | SONG Shao-zheng, LU Rui, ZHANG Ting, HE Zheng-yi, WU Zhao-manqiu, CHENG Yong, ZHOU Ming-ming. Research Progress of CRISPR /Cas9 Gene Editing Technology in Goat and Sheep [J]. Biotechnology Bulletin, 2020, 36(3): 62-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||