Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (2): 289-296.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1600s
Previous Articles Next Articles
GUO Xiao-zhen(), ZHANG Xue-fu()
Received:
2021-07-10
Online:
2022-02-26
Published:
2022-03-09
Contact:
ZHANG Xue-fu
E-mail:937054577@qq.com;zhangxuefu@caas.cn
GUO Xiao-zhen, ZHANG Xue-fu. Analysis of the Development Trend in the Field of Plant Synthetic Biology[J]. Biotechnology Bulletin, 2022, 38(2): 289-296.
启动时间 Start-up time | 项目名称 Project |
---|---|
2011年 | 人工合成细胞工厂 |
光合作用与人工叶片 | |
2012年 | 新功能人造生物器件的构建与集成 |
微生物药物创新与优产的人工合成体系 | |
用合成生物学方法构建生物基材料的合成新途径 | |
2013年 | 合成微生物体系的适配性研究 |
抗逆元器件的构建和机理研究 | |
2014年 | 合成生物器件干预膀胱癌的研究 |
微生物多细胞体系的设计与合成 | |
2015年 | 生物固氮及相关抗逆模块的人工设计与系统优化 |
Table 1 Synthetic biology related projects supported by “973” program
启动时间 Start-up time | 项目名称 Project |
---|---|
2011年 | 人工合成细胞工厂 |
光合作用与人工叶片 | |
2012年 | 新功能人造生物器件的构建与集成 |
微生物药物创新与优产的人工合成体系 | |
用合成生物学方法构建生物基材料的合成新途径 | |
2013年 | 合成微生物体系的适配性研究 |
抗逆元器件的构建和机理研究 | |
2014年 | 合成生物器件干预膀胱癌的研究 |
微生物多细胞体系的设计与合成 | |
2015年 | 生物固氮及相关抗逆模块的人工设计与系统优化 |
节点 | 内容解读 |
---|---|
Wittstock U(2000) | Cytochrome P450CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate |
Mikkelsen MD(2000) | Cytochrome P450CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime,a precursor of indole glucosinolates and indole-3-acetic acid |
Hansen CH(2001) | Cytochrome P450CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates |
Mikkelsen MD(2003) | Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways |
Mikkelsen MD(2004) | Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis |
Grubb CD(2004) | Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis |
Levy M(2005) | Arabidopsis IQD1,a novel calmodulin-binding nuclear protein,stimulates glucosinolate accumulation and plant defense |
Skirycz A(2006) | DOF transcription factor AtDof1.1(OBP2)is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis |
Gigolashvili T(2007) | The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana |
Sonderby IE(2007) | A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates |
Malitsky S(2008) | The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators |
Sawada Y(2009) | Omics-Based approaches to methionine side chain elongation in Arabidopsis:Characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase |
Sawada Y(2009) | Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis |
Albinsky D(2010) | Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis |
Sonderby IE(2010) | A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis1[C][W][OA] |
Pfalz M(2011) | Metabolic engineering in nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification |
Mikkelsen MD(2012) | Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform |
Fossati E(2014) | Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae |
Trenchard IJ(2015) | De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast |
DeLoache WC(2015) | An enzyme-coupled biosensor enables(S)-reticuline production in yeast from glucose |
Galanie S(2015) | Optimization of yeast-based production of medicinal protoberberine alkaloids |
Li YR(2018) | Complete biosynthesis of noscapine and halogenated alkaloids in yeast |
Wang Y(2019) | Design and use of de novo cascades for the biosynthesis of new benzylisoquinoline alkaloids |
Cabry MP(2019) | Structure of Papaver somniferum O-methyltransferase 1 reveals initiation of noscapine biosynthesis with implications for plant natural product methylation |
Lang DE(2019) | Structure-function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition |
Table 2 Content analysis of main path nodes in year 2010-2019
节点 | 内容解读 |
---|---|
Wittstock U(2000) | Cytochrome P450CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate |
Mikkelsen MD(2000) | Cytochrome P450CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime,a precursor of indole glucosinolates and indole-3-acetic acid |
Hansen CH(2001) | Cytochrome P450CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates |
Mikkelsen MD(2003) | Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways |
Mikkelsen MD(2004) | Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis |
Grubb CD(2004) | Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis |
Levy M(2005) | Arabidopsis IQD1,a novel calmodulin-binding nuclear protein,stimulates glucosinolate accumulation and plant defense |
Skirycz A(2006) | DOF transcription factor AtDof1.1(OBP2)is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis |
Gigolashvili T(2007) | The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana |
Sonderby IE(2007) | A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates |
Malitsky S(2008) | The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators |
Sawada Y(2009) | Omics-Based approaches to methionine side chain elongation in Arabidopsis:Characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase |
Sawada Y(2009) | Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis |
Albinsky D(2010) | Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis |
Sonderby IE(2010) | A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis1[C][W][OA] |
Pfalz M(2011) | Metabolic engineering in nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification |
Mikkelsen MD(2012) | Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform |
Fossati E(2014) | Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae |
Trenchard IJ(2015) | De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast |
DeLoache WC(2015) | An enzyme-coupled biosensor enables(S)-reticuline production in yeast from glucose |
Galanie S(2015) | Optimization of yeast-based production of medicinal protoberberine alkaloids |
Li YR(2018) | Complete biosynthesis of noscapine and halogenated alkaloids in yeast |
Wang Y(2019) | Design and use of de novo cascades for the biosynthesis of new benzylisoquinoline alkaloids |
Cabry MP(2019) | Structure of Papaver somniferum O-methyltransferase 1 reveals initiation of noscapine biosynthesis with implications for plant natural product methylation |
Lang DE(2019) | Structure-function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition |
[1] | 张先恩. 中国合成生物学发展回顾与展望[J]. 中国科学:生命科学, 2019, 49(12):1543-1572. |
Zhang XE. Synthetic biology in China:Review and prospects[J]. Scientia Sinica(Vitae): 2019, 49(12):1543-1572. | |
[2] | 江会锋. 合成生物技术助力可持续发展[J]. 生物技术通报, 2020, 36(4):1-2. |
Jiang HF. Synthetic biotechnology boosts sustainable development[J]. Biotechnology Bulletin, 2020, 36(4):1-2. | |
[3] |
Si T, Zhao HM. A brief overview of synthetic biology research programs and roadmap studies in the United States[J]. Synthetic and Systems Biotechnology, 2016, 1(4):258-264.
doi: 10.1016/j.synbio.2016.08.003 URL |
[4] |
Clarke LJ, Kitney RI. Synthetic biology in the UK - An outline of plans and progress[J]. Synthetic and Systems Biotechnology, 2016, 1(4):243-257.
doi: 10.1016/j.synbio.2016.09.003 pmid: 29062950 |
[5] | 陈国强, 王颖. 中国“合成生物学”973 项目研究进展[J]. 生物工程学报, 2015, 31(6):995-1008. |
Chen GQ, Wang Y. Progress in synthetic biology of “973 Funding Program” in China[J]. Chin J Biotech June, 2015, 31(6):995-1008. | |
[6] | 孙晓, 杨鹏, 王虹扬. 农业绿色发展研究文献计量分析[J]. 中国农业资源与区划, 2021, 42(2):1-9. |
Sun X, Yang P, Wang HY. Bibliometric analysis of agricultural green development[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(2):1-9. | |
[7] | 马瑞敏, 杨雨华. 基于节点重要性的领域主路径发现新探索[J]. 情报杂志, 2018(3):71-78, 93. |
Ma RM, Yang YH. Discovering main path of a domain based on node importance[J]. Journal of Intelligence, 2018, 37(3):71-78, 93. | |
[8] |
Yang G, Zheng Q, Hu P, et al. Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat-Thinopyrum intermedium translocation line WTT11[J]. aBIOTECH, 2021, 2:343-356.
doi: 10.1007/s42994-021-00060-3 URL |
[9] | Sun L, Wen J, Peng H, et al. The genetic and molecular basis for improving heat stress tolerance in wheat[J]. aBIOTECH, 2021, https://doi.org/10.1007/s42994-021-00064-z . |
[10] | 种康, 许智宏, 李家洋. 中国植物科学基础研究概[J]. 中国基础科学, 2016, 18(1):7-12. |
Chong K, Xu ZH, Li JY. Basic research panorama of plant science in China[J]. China Basic Science, 2016, 18(1):7-12. | |
[11] |
Mikkelsen MD. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways[J]. Plant Physiology, 2003, 131(1):298.
pmid: 12529537 |
[12] |
Mikkelsen MD, Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform[J]. Metabolic Engineering, 2012, 14(2):104-111.
doi: 10.1016/j.ymben.2012.01.006 pmid: 22326477 |
[13] | Fossati E. Reconstitution of a 10-gene pathway for synjournal of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisi-ae[J]. Nature Communications, 2014, 5. |
[14] |
Sun T, Zhu Q, Wei Z, et al. Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Ara-bidopsis seeds[J]. aBIOTECH, 2021, 2(3):191-214.
doi: 10.1007/s42994-021-00046-1 URL |
[15] |
张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8):1-11.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0861 |
Zhang F, Chen W. Research progress of metabolomics in plant stress biology[J]. Biotechnology Bulletin, 2021, 37(8):1-11. | |
[16] | 薛勇彪, 韩斌, 种康, 等. 水稻分子模块设计研究成果与展望[J]. 中国科学院院刊, 2018, 33(9):900-908. |
Xue YB, Han B, Chong K, et al. Achievements and prospect of designer breeding by molecular modules in rice[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(9):900-908. | |
[17] |
Li J, Li Y, Ma L. Recent advances in CRISPR/Cas9 and applicati-ons for wheat functional genomics and breeding[J]. aBIOTECH, 2012, 2(3):375-385.
doi: 10.1007/s42994-021-00042-5 URL |
[1] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[2] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[3] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[4] | ZHOU Lin, LIANG Xuan-ming, ZHAO Lei. Biosynthesis of Natural Carotenoids:Progress and Perspective [J]. Biotechnology Bulletin, 2022, 38(7): 119-127. |
[5] | ZHAO Yu-xue, WANG Yun, YU Lu-yao, LIU Jing-jing, SI Jin-ping, ZHANG Xin-feng, ZHANG Lei. Structure and Application of C-glycosyltransferases in Plants [J]. Biotechnology Bulletin, 2022, 38(10): 18-28. |
[6] | YE Min, GAO Jiao-qi, ZHOU Yong-jin. Engineering Non-conventional Yeast Cell Factory for the Biosynthesis of Natural Products [J]. Biotechnology Bulletin, 2021, 37(8): 12-24. |
[7] | ZHANG Chan, YAO Guang-long, ZHANG Jun-feng, YU Jing, YANG Dong-mei, CHEN Ping, WU You-gen. Research Progress on Patchoulol Molecular Regulation and Synthetic Biology in Pogostemon cablin [J]. Biotechnology Bulletin, 2021, 37(8): 55-64. |
[8] | WUJI Siguleng, LI Xiao-man, ZHANG Xue-fu. Research Trend and Hotspot Analysis of Avian Influenza Virus Prevention and Control in China-Based on OIE Reference Laboratories Impact [J]. Biotechnology Bulletin, 2020, 36(7): 139-147. |
[9] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[10] | CHANG Han-wen, ZHENG Xin-ling, LUO Jian-mei, WANG Min, SHEN Yan-bing. Tolerance Elements and Their Application Progress on the Construction of Highly-efficient Microbial Cell Factory [J]. Biotechnology Bulletin, 2020, 36(6): 13-34. |
[11] | ZHáNG Hui, TIáN Fáng-fáng, WU Yi. Synthetic Yeást Genome SCRáMbLE [J]. Biotechnology Bulletin, 2020, 36(4): 13-18. |
[12] | CáO Yán-ting, LIU Yán-feng, LI Jiáng-huá, LIU Long, DU Guo-cheng. ádvánces of Improving the Efficiency of Chemicál Biosynthesis Básed on Cell Subpopulátion Regulátion [J]. Biotechnology Bulletin, 2020, 36(4): 19-25. |
[13] | LI Jia-xiu, CAI Qian-ru, WU Jie-qun. Research Progresses on the Synthetic Biology of Terpenes in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(12): 199-207. |
[14] | LIU Xin-ping, TAN Yu-meng, ZHANG Xue, FENG Yan, YANG Guang-yu. Biosynthesis of Ganglioside Oligosaccharide Fluoride in Escherichia coli [J]. Biotechnology Bulletin, 2019, 35(8): 162-169. |
[15] | LIU Yang-er, GUO Ming-zhang, DU Ruo-xi, HE Xiao-yun, HUANG Kun-lun, XU Wen-tao. Advances and Prospects of Synthetic Biology in Lactic Acid Bacteria [J]. Biotechnology Bulletin, 2019, 35(8): 193-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||