Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (12): 194-203.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0665
Previous Articles Next Articles
GAN Cheng-yan(), ZHANG Xin-hui, WANG Sha, FAN Yao-yu-wei, ZHAO Xue-qing, YUAN Zhao-he()
Received:
2022-05-28
Online:
2022-12-26
Published:
2022-12-29
Contact:
YUAN Zhao-he
E-mail:gcy@njfu.edu.cn;zhyuan88@hotmail.com
GAN Cheng-yan, ZHANG Xin-hui, WANG Sha, FAN Yao-yu-wei, ZHAO Xue-qing, YUAN Zhao-he. Cloning and Functional Study of the PgSPL2 Gene Related to the Development of Pomegranate Flowers[J]. Biotechnology Bulletin, 2022, 38(12): 194-203.
Fig. 1 Incomplete(a)and complete(b)flowers at different developmental stages of pomegranate(Punica granatum L.) P1:Longitudinal diameter 3.0-5.0 mm. P2:Longitudinal diameter 5.1-13.0 mm. P3:Longitudinal diameter 13.1-25.0 mm
引物Primer | 引物序列Primer sequence(5'-3') | 试验用途Test purpose |
---|---|---|
PgSPL2 | F:ATGAATGCCAATGG R:TTATCTTATCTGGAAGTGC | 基因克隆 Gene clone |
GUS-PgSPL2 | F:gagaacacgggggactctagaATGAATGCCAATGG R:gcccttgctcaccatggatccTTATCTTATCTGGAAGTGC | 功能验证 Functional verification |
qRT-PgSPL2 | F:GACTTCACCACCGAGCTGT R:CTCAGCCCAGCAACTATCACC | 荧光定量引物 Fluorescent quantitative PCR primer |
qRT-AtFUL | F:GAGAAGCGGGTCAGCAAG R:GCCATCTCTGGAGGAGGTTA | 荧光定量引物 Fluorescent quantitative PCR primer |
qRT-AtLFY | F:ATCGCTTGTCGTCATGGCTG R:GCAACCGCATTGTTCCGCTC | 荧光定量引物 Fluorescent quantitative PCR primer |
qRT-AtSOC1 | F:TGTTCCAGGTCCTAGTGACCCCT R:ACGTAGCATCTGTTGTGCCGGG | 荧光定量引物 Fluorescent quantitative PCR primer |
AtActin | F:ACTTGAACGAGTAGGAGTGAAG R:CAGCCGACTTTACAAGAAC | 拟南芥内参引物 Internal primer of Arabidopsis thaliana |
PgActin | F:AGTCCTCTTCCAGCCATCTC R:CACTGAGCACAATGTTTCCA | 石榴内参引物 Internal primer of pomegranate |
Table 1 Primers for the gene cloning,functional verification and specific expressions
引物Primer | 引物序列Primer sequence(5'-3') | 试验用途Test purpose |
---|---|---|
PgSPL2 | F:ATGAATGCCAATGG R:TTATCTTATCTGGAAGTGC | 基因克隆 Gene clone |
GUS-PgSPL2 | F:gagaacacgggggactctagaATGAATGCCAATGG R:gcccttgctcaccatggatccTTATCTTATCTGGAAGTGC | 功能验证 Functional verification |
qRT-PgSPL2 | F:GACTTCACCACCGAGCTGT R:CTCAGCCCAGCAACTATCACC | 荧光定量引物 Fluorescent quantitative PCR primer |
qRT-AtFUL | F:GAGAAGCGGGTCAGCAAG R:GCCATCTCTGGAGGAGGTTA | 荧光定量引物 Fluorescent quantitative PCR primer |
qRT-AtLFY | F:ATCGCTTGTCGTCATGGCTG R:GCAACCGCATTGTTCCGCTC | 荧光定量引物 Fluorescent quantitative PCR primer |
qRT-AtSOC1 | F:TGTTCCAGGTCCTAGTGACCCCT R:ACGTAGCATCTGTTGTGCCGGG | 荧光定量引物 Fluorescent quantitative PCR primer |
AtActin | F:ACTTGAACGAGTAGGAGTGAAG R:CAGCCGACTTTACAAGAAC | 拟南芥内参引物 Internal primer of Arabidopsis thaliana |
PgActin | F:AGTCCTCTTCCAGCCATCTC R:CACTGAGCACAATGTTTCCA | 石榴内参引物 Internal primer of pomegranate |
Fig. 3 Multiple sequence alignment of protein VvSBP4:Vitis vinifera,GSVIVT01003836001;SlySBP4:Solanum lycopersicun,Solyc07g053810;PgSPL14:Punica granatum,Pg029352.1;VvSBP11:Vitis vinifera,GSVIVT01020578001;AtSPL4:Arabidopsis thaliana,AT1G5316;AtSPL5:Arabidopsis thaliana,AT3G15270;VvSBP18:Vitis vinifera,GSVIVT01014302001;PgSPL13:Punica granatum,Pg029123.1;AtSPL3:Arabidopsis thaliana,AT2G33810;PgSPL2:Punica granatum,XP_031375027.1;VvSBP9:Vitis vinifera,GSVIVT01021087001;CNR:Solanum lycopersicun,Solyc02g077920;SlySBP3:Solanum lycopersicun,Solyc10g009080
处理种类 Types of processing | 初花期 First flowering period/d | 盛花期 Blooming period/d | 末花期 Final flowering period/d |
---|---|---|---|
CK | 5-10 | 5-25 | 6-20 |
PP333 | 5-13 | 5-29 | 6-17 |
6-BA | 5-15 | 5-27 | 6-15 |
IBA | 5-15 | 5-29 | 6-17 |
Table 2 Effects of growth regulators on pomegranate flo-wer stage
处理种类 Types of processing | 初花期 First flowering period/d | 盛花期 Blooming period/d | 末花期 Final flowering period/d |
---|---|---|---|
CK | 5-10 | 5-25 | 6-20 |
PP333 | 5-13 | 5-29 | 6-17 |
6-BA | 5-15 | 5-27 | 6-15 |
IBA | 5-15 | 5-29 | 6-17 |
处理Treatment | 完全花比率Complete flower ratio/% |
---|---|
CK | 28.64±2.13b |
PP333 | 36.17±2.75a |
6-BA | 33.43±1.86a |
IBA | 33.04±1.72a |
Table 3 Effects of growth regulators on complete flowering rate of pomegranate
处理Treatment | 完全花比率Complete flower ratio/% |
---|---|
CK | 28.64±2.13b |
PP333 | 36.17±2.75a |
6-BA | 33.43±1.86a |
IBA | 33.04±1.72a |
Fig. 6 Relative expressions of PgSPL2 gene in different tissues of pomegranate and at different developmental stages after different treatments A:Analysis of PgSPL2 expression in different tissues;B:PP333 treatment;C:6-BA treatment;D:IBA treatment. In the illustration (X) and (Y) represent incomplete flowers and complete flowers respectively. Different lowercase letters indicate significant differences at the 0.05 level. The same below
Fig. 7 Detection and performance observation of the PgSPL2 transgenic plants A:The T0 transgenic plants were screened,red arrows indicate the transgenic Arabidopsis plants screened for Kana resistance. B:PCR characterization of overexpressed PgSPL2 Arabidopsis plants. C:The T2 transgenic plants were screened;red arrows indicate the transgenic Arabidopsis plants screened for Kana resistance. D:Phenotype of wild-type versus transgenic Arabidopsis. E:GUS staining of seedlings of T2 transgenic plants. F:GUS staining of the inflorescence of T3 transgenic plants
[1] | Klein J, Saedler H, Huijser P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Mol Gen Genet, 1996, 250(1):7-16. |
[2] |
Birkenbihl RP, Jach G, Saedler H, et al. Functional dissection of the plant-specific SBP-domain:overlap of the DNA-binding and nuclear localization domains[J]. J Mol Biol, 2005, 352(3):585-596.
pmid: 16095614 |
[3] | 田晶, 赵雪媛, 谢隆聖, 等. SPL转录因子调控植物花发育及其分子机制研究进展[J]. 南京林业大学学报:自然科学版, 2018, 42(3):159-166. |
Tian J, Zhao XY, Xie LS, et al. Research advances and molecular mechanism on SPL transcription factors in regulating plant flower development[J]. J Nanjing For Univ Nat Sci Ed, 2018, 42(3):159-166. | |
[4] |
Yamaguchi A, Wu MF, Yang L, et al. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1[J]. Dev Cell, 2009, 17(2):268-278.
doi: 10.1016/j.devcel.2009.06.007 pmid: 19686687 |
[5] |
Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4):738-749.
doi: 10.1016/j.cell.2009.06.014 URL |
[6] | Hou H, Jia H, Yan Q, et al. Overexpression of a SBP-box gene(VpS-BP16)from Chinese wild Vitis species in Arabidopsis improves sal-inity and drought stress tolerance[J]. Int J Mol Sci, 2018, 19(4):E940. |
[7] |
Preston JC, Hileman LC. SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes[J]. Plant J, 2010, 62(4):704-712.
doi: 10.1111/j.1365-313X.2010.04184.x URL |
[8] | 陈晓博. 参与番茄花柄离区发育的转录因子SPL3的基因功能研究[D]. 北京: 中国农业科学院, 2010. |
Chen XB. Functional study of a transcription factor Squamosa promoter binding protein like 3 in tomato flower abscission zone development[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. | |
[9] |
Yuan ZH, Fang YM, Zhang TK, et al.The pomegranate(Punica granatum L. )genome provides insights into fruit quality and ovule developmental biology[J]. Plant Biotechnol J, 2018, 16(7):1363-1374.
doi: 10.1111/pbi.12875 URL |
[10] | 曹尚银, 谭洪花, 刘丽, 等. 中国石榴栽培历史、生产与科研现状及产业化方向[C]// 中国石榴研究进展(一). 北京: 中国农业出版社, 2010. |
Cao SY, Tan HH, Liu L, et al. Chinese history, status of production and scientific research, industrialization orientation of Chinese pomegranate[C]// Research Progress on China Pomegranate(Ⅰ). Beijing: China Agricultural Publishing House, 2010. | |
[11] |
Wetzstein HY, Ravid N, Wilkins E, et al. A morphological and histological characterization of bisexual and male flower types in pomegranate[J]. J Amer Soc Hort Sci, 2011, 136(2):83-92.
doi: 10.21273/JASHS.136.2.83 URL |
[12] | Holland D, Hatib K, Bar-Ya’akov I. Pomegranate:botany, horticulture, breeding[M]// Horticultural Reviews. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009:127-191. |
[13] | 赵静, 王昱, 何倩茹. 石榴生长主要物候期气象服务指标分析[J]. 现代农业科技, 2015(19):263-264, 266. |
Zhao J, Wang Y, He QR. Analysis of the meteorological service index during the main phenological period of pomegranate growth[J]. Mod Agric Sci Technol, 2015(19):263-264, 266. | |
[14] | 李绍稳, 张如锋, 钟家煌, 等. 石榴花芽形态分化的研究[J]. 中国南方果树, 1996(3):39-41. |
Li SW, Zhang RF, Zhong JH, et al. Study on the morphological differentiation of flower bud of pomegranate[J]. South China Fruits, 1996(3):39-41. | |
[15] | Guerriero R, Scalabrelli G, Fiocchi C. Influence of light and chilling conditions on apricot bud opening[J]. Acta Hortic, 1991(293):327-330. |
[16] | 马翠云. 梨花器官冻害生理机理的研究[D]. 南京: 南京农业大学, 2013. |
Ma CY. The study on the physiological mechanism of frost injury to apricot floral organs[D]. Nanjing: Nanjing Agricultural University, 2013. | |
[17] | 赵莲花, 王富河, 夏玉宝, 等. PBO等4种生长调节剂对石榴坐果和产量的影响[C]// 中国石榴研究进展(一). 北京: 中国农业出版社, 2010: 216-218. |
Zhao LH, Wang FH, Xia YB, et al. The influence on set fruit and output of pomegranate on four plant growth regulators[C]// Research Progress on China Pomegranate(I). Beijing:China Agricultural Publishing House, 2010:216-218. | |
[18] | 宋雪娜. 6个苹果品种花期冻害调查及抗冻性分析[D]. 杨凌: 西北农林科技大学, 2019. |
Song XN. Investigation of freezing injury and freezing resistance of six varieties during apple florescence[D]. Yangling: Northwest A & F University, 2019. | |
[19] | 陈利娜. 石榴花雌蕊败育相关microRNAs发掘与pg-miR166a-3p调控雌蕊发育的功能分析[D]. 北京: 中国农业科学院, 2020. |
Chen LN. Exploration of microRNAs related to pistil abortion in pomegranate flowers and functional analysis of Pg-miR166a-3p regulating pistil development[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
[20] |
Kim JJ, Lee JH, Kim W, et al. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis[J]. Plant Physiology, 2012, 159(1):461-478.
doi: 10.1104/pp.111.192369 pmid: 22427344 |
[21] | 侯鸿敏. 葡萄转录因子SBP家族基因克隆、表达及功能分析[D]. 杨凌: 西北农林科技大学, 2013. |
Hou HM. Cloninq expression and function analysis of the SBP-box family genes in grape[D]. Yangling: Northwest A & F University, 2013. | |
[22] |
Schwarz S, Grande AV, Bujdoso N, et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Mol Biol, 2008, 67(1/2):183-195.
doi: 10.1007/s11103-008-9310-z URL |
[23] | 陈文文, 吴怀通, 陈赢男. SPL家族基因复制及功能分化分析[J]. 南京林业大学学报:自然科学版, 2020, 44(5):55-66. |
Chen WW, Wu HT, Chen YN. Gene duplications and functional divergence analyses of the SPL gene family[J]. J Nanjing For Univ Nat Sci Ed, 2020, 44(5):55-66. | |
[24] | 孔佑涵, 苑平, 谢新华, 等. 多效唑对突尼斯软籽石榴开花结实的影响[J]. 湖南农业科学, 2017(3):10-12. |
Kong YH, Yuan P, Xie XH, et al. Effects of paclobutrazol on the flowering and the fruiting ability of‘Tunisiruanzi’ pomegranate(Punica granatum)[J]. Hunan Agric Sci, 2017(3):10-12. | |
[25] |
Pan BZ, Xu ZF. Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas[J]. J Plant Growth Regul, 2011, 30(2):166-174.
doi: 10.1007/s00344-010-9179-3 URL |
[26] |
Villar L, Lienqueo I, Llanes A, et al. Comparative transcriptomic analysis reveals novel roles of transcription factors and hormones during the flowering induction and floral bud differentiation in sweet cherry trees(Prunus avium L. cv. Bing)[J]. PLoS One, 2020, 15(3):e0230110.
doi: 10.1371/journal.pone.0230110 URL |
[27] | 冯贝贝. 欧洲李生长发育生物学特性研究[D]. 乌鲁木齐: 新疆农业大学, 2017. |
Feng BB. Biological characteristics of growth and development of Prunus domestica L[D]. Urumqi: Xinjiang Agricultural University, 2017. | |
[28] | 孙云才. 提高果树树体营养促进花芽分化[J]. 果树实用技术与信息, 2011(6):18. |
Sun YC. Improve nutrition of fruit trees and promote flower bud differentiation[J]. Guoshu Shiyong Jishu Yu Xinxi, 2011(6):18. | |
[29] |
Jung JH, Lee HJ, Ryu JY, et al. SPL3/4/5 integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering[J]. Mol Plant, 2016, 9(12):1647-1659.
doi: 10.1016/j.molp.2016.10.014 URL |
[1] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[2] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[3] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[4] | WANG Jia-rui, SUN Pei-yuan, KE Jin, RAN Bin, LI Hong-you. Cloning and Expression Analyses of C-glycosyltransferase Gene FtUGT143 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 204-212. |
[5] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[6] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[7] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[8] | LAI Rui-lian, FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting. Genome-wide Identification of Catalase Family Genes and Expression Analysis in Kiwifruit [J]. Biotechnology Bulletin, 2023, 39(4): 136-147. |
[9] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[10] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[11] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[12] | LIU Si-jia, WANG Hao-nan, FU Yu-chen, YAN Wen-xin, HU Zeng-hui, LENG Ping-sheng. Cloning and Functional Analysis of LiCMK Gene in Lilium ‘Siberia’ [J]. Biotechnology Bulletin, 2023, 39(3): 196-205. |
[13] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[14] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[15] | YANG Xu-yan, ZHAO Shuang, MA Tian-yi, BAI Yu, WANG Yu-shu. Cloning of Three Cabbage WRKY Genes and Their Expressions in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 261-269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||