Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 248-258.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0370
Previous Articles Next Articles
YE Liu-jian1(), HE Yu-lan2, WANG Xiao-hu1, WEI Sheng-bo1, HE Shuang1, ZHU Qi-xia1, LU Jie2(), ZHOU Li-qin1()
Received:
2024-04-18
Online:
2024-11-26
Published:
2024-12-19
Contact:
LU Jie, ZHOU Li-qin
E-mail:yeliujian2022@126.com;gxkxyzlq@126.com;jlu92@163.com
YE Liu-jian, HE Yu-lan, WANG Xiao-hu, WEI Sheng-bo, HE Shuang, ZHU Qi-xia, LU Jie, ZHOU Li-qin. Effects of Bacillus amyloliquefaciens YK3 on the Control of Citrus reticulata cv. Orah Canker and Its Influence on the Network of Phyllosphere Bacteria[J]. Biotechnology Bulletin, 2024, 40(11): 248-258.
培养基名称 Name of culture medium | 培养基的配方 Formula of culture medium/(g·L-1) |
---|---|
NA | 牛肉膏3.00,胰蛋白胨5.00,琼脂粉15.00 |
LB | 胰蛋白胨10.00,酵母粉5.00,氯化钠10.00,琼脂粉15.00 |
NB | 胰蛋白胨10.00,牛肉膏3.00,氯化钠5.00 |
CD | 硝酸钠2.00,磷酸二氢钾0.70,磷酸氢二钾0.30,氯化钾0.50,硫酸镁0.50,硫酸亚铁0.01,蔗糖30.00 |
YPD | 酵母粉10.00,胰蛋白胨20.00,葡萄糖20.00 |
PDB | 马铃薯200.00,葡萄糖20.00 |
SPA | 胰蛋白胨10.00,磷酸氢二钾0.50,硫酸镁0.25,蔗糖20.00 |
KB | 胰蛋白胨20.00,甘油10.00,磷酸氢二钾1.50,硫酸镁1.50 |
BP | 牛肉膏3.00,胰蛋白胨10.00,氯化钠5.00 |
Table 1 Formula of culture medium used in the experiment
培养基名称 Name of culture medium | 培养基的配方 Formula of culture medium/(g·L-1) |
---|---|
NA | 牛肉膏3.00,胰蛋白胨5.00,琼脂粉15.00 |
LB | 胰蛋白胨10.00,酵母粉5.00,氯化钠10.00,琼脂粉15.00 |
NB | 胰蛋白胨10.00,牛肉膏3.00,氯化钠5.00 |
CD | 硝酸钠2.00,磷酸二氢钾0.70,磷酸氢二钾0.30,氯化钾0.50,硫酸镁0.50,硫酸亚铁0.01,蔗糖30.00 |
YPD | 酵母粉10.00,胰蛋白胨20.00,葡萄糖20.00 |
PDB | 马铃薯200.00,葡萄糖20.00 |
SPA | 胰蛋白胨10.00,磷酸氢二钾0.50,硫酸镁0.25,蔗糖20.00 |
KB | 胰蛋白胨20.00,甘油10.00,磷酸氢二钾1.50,硫酸镁1.50 |
BP | 牛肉膏3.00,胰蛋白胨10.00,氯化钠5.00 |
Fig. 1 Isolation of pathogenic bacteria and their pathogenic effects on the Orah leaf A: Pathogen K32 of Orah canker disease. B: Pathogenic effects of pathogens on the Orah leaf
Fig. 2 Isolation of antagonistic bacteria and their antagonistic effects on pathogenic bacteria A: Antagonistic bacteria YK2. B: Antagonistic bacteria YK3. C: Antagonistic effects of YK2 and YK3 on pathogenic bacteria on agar plates. The two holes above indicate the YK2 fermentation broth and the filtrate of the fermentation broth, while the two holes below indicate the YK3 fermentation broth and the filtrate of the fermentation broth, respectively. D: The antagonistic effect of YK3 on the pathogenic bacteria on the Orah leaf. The two columns at the edge of the image show Cu preparations, while the middle two columns show the filtrate of the antagonistic bacteria YK3 fermentation broth
Fig. 3 Biological characteristics of K32 NB: Nutrient broth medium. LB: Luria-Bertani medium. CD: Czapek-Dox medium. YPD: Yeast extract peptone dextrose medium. PDB: Potato dextrose broth medium
检测指标Detection index | 反应Response | 检测指标Detection index | 反应Response | 检测指标Detection index | 反应Response | ||
---|---|---|---|---|---|---|---|
氨苄青霉素Ampicillin | + | 氯霉素Chloramphenicol | - | 卡纳霉素Kanamycin | - | ||
链霉素Streptomycin | + | 庆大霉素Gentamicin | - | 盐浓度Salt concentration | + | ||
溶解钙 Dissolved calcium | - | 溶解有机磷Dissolved organic phosphorus | - | 溶解无机磷Dissolved inorganic phosphorus | + | ||
纤维素Cellulose | - | 柠檬酸盐Citrate | + | 还原硝酸盐Reduced nitrate | + | ||
铁载体Siderophore | + | 吲哚Indole | + | 淀粉酶Diastase | + | ||
蛋白酶Protease | + | 脲酶Urease | + | H2O2接触酶H2O2 Catalase | + | ||
V-P试验V-P test | + | 甲基红试验Methyl red test | - |
Table 2 Biological characteristics of YK3
检测指标Detection index | 反应Response | 检测指标Detection index | 反应Response | 检测指标Detection index | 反应Response | ||
---|---|---|---|---|---|---|---|
氨苄青霉素Ampicillin | + | 氯霉素Chloramphenicol | - | 卡纳霉素Kanamycin | - | ||
链霉素Streptomycin | + | 庆大霉素Gentamicin | - | 盐浓度Salt concentration | + | ||
溶解钙 Dissolved calcium | - | 溶解有机磷Dissolved organic phosphorus | - | 溶解无机磷Dissolved inorganic phosphorus | + | ||
纤维素Cellulose | - | 柠檬酸盐Citrate | + | 还原硝酸盐Reduced nitrate | + | ||
铁载体Siderophore | + | 吲哚Indole | + | 淀粉酶Diastase | + | ||
蛋白酶Protease | + | 脲酶Urease | + | H2O2接触酶H2O2 Catalase | + | ||
V-P试验V-P test | + | 甲基红试验Methyl red test | - |
Fig. 4 Optimization of fermentation conditions for producing bacteriostatic substances in YK3 LB: Luria-Bertani medium. SPA: Tryptone sucrose medium. KB: King’s B medium. BP: Beef-protein medium. PDB: Potato dextrose broth medium. Gl: Glucose. Su: Sucrose. Fr: Fructose. Ma: Maltose. Ss: Soluble starch. La: Lactose. Sp: Soy peptone. Tr: Tryptone. Ye: Yeast extract. Ca: Casein. Be: Beef extract. As: Ammonium sulfate. K: Dipotassium hydrogen phosphate. Na: Sodium chloride. Mg: Magnesium sulphate. Fe: Ferrous sulfate. Mn: Manganese sulfate. Ca: Calcium chloride. Cu: Copper sulphate
分组 Group | 病情指数 Disease index/% | 相对防治效果 Relative control efficiency/% |
---|---|---|
CK | 0 ± 0 | - |
T1 | 96.67 ± 4.71 | - |
T2 | 0 ± 0 | 100 ± 0 |
T3 | 33.33 ± 4.71 | 65.56 ± 4.16 |
Table 3 Effects of antagonistic bacterium YK3 on the control of Orah canker
分组 Group | 病情指数 Disease index/% | 相对防治效果 Relative control efficiency/% |
---|---|---|
CK | 0 ± 0 | - |
T1 | 96.67 ± 4.71 | - |
T2 | 0 ± 0 | 100 ± 0 |
T3 | 33.33 ± 4.71 | 65.56 ± 4.16 |
分组 Group | Chao1 | Shannon |
---|---|---|
CK | 1 599.33 ± 386.47a | 7.43 ± 1.05a |
T1 | 626.14 ± 218.99b | 2.38 ± 0.30b |
T2 | 549.14 ± 145.68b | 2.20 ± 1.06b |
T3 | 496.00 ± 150.29b | 1.96 ± 0.29b |
Table 4 Effects of different treatments on α diversity of phyllospheric bacterial communities of Orah
分组 Group | Chao1 | Shannon |
---|---|---|
CK | 1 599.33 ± 386.47a | 7.43 ± 1.05a |
T1 | 626.14 ± 218.99b | 2.38 ± 0.30b |
T2 | 549.14 ± 145.68b | 2.20 ± 1.06b |
T3 | 496.00 ± 150.29b | 1.96 ± 0.29b |
Fig. 6 Correlation networks of phyllospheric bacterial communities of Orah in different groups(Genus level) Sphere nodes indicate species, sphere size indicates abundance, and sphere color represents different phylum levels to which species belong. The line indicates the correlation between the two species, the thickness of the line indicates the strength of the correlation, the red line indicates the positive correlation, and the green line indicates the negative correlation
[1] | 雷能刚. 广西沃柑栽培技术要点[J]. 南方农业, 2023, 17(5): 145-147, 151. |
Lei NG. Key points of cultivation techniques for Citrus reticulata Blanco in Guangxi[J]. South China Agric, 2023, 17(5): 145-147, 151. | |
[2] | Li Q, Xian BH, Yu QY, et al. The CsAP2-09-CsWRKY25-CsRBOH2 cascade confers resistance against citrus bacterial canker by regulating ROS homeostasis[J]. Plant J, 2024, 118(2): 534-548. |
[3] | 邱发发, 潘贞珍, 李鸾翔, 等. 沃柑叶片响应柑橘溃疡病菌侵染的转录组分析[J]. 果树学报, 2022, 39(4): 631-643. |
Qiu FF, Pan ZZ, Li LX, et al. Transcriptome analysis of Orah leaves in response to citrus canker infection[J]. J Fruit Sci, 2022, 39(4): 631-643. | |
[4] | Angelotti-Mendonça J, de Oliveira PN, Ansante NF, et al. Expression of the Citrus sinensis EDS5 gene, MATE family, in Solanum lycopersicum L. cv. Micro-Tom enhances resistance to tomato spot disease[J]. Trop Plant Pathol, 2022, 47(2): 287-297. |
[5] | Long YF, Luo RF, Xu Z, et al. A fluorescent reporter-based evaluation assay for antibacterial components against Xanthomonas citri subsp. citri[J]. Front Microbiol, 2022, 13: 864963. |
[6] | Machado FJ, da Silva Marin TG, Canôas F, et al. Timing of copper sprays to protect mechanical wounds against infection by Xanthomonas citri subsp. citri, causal agent of citrus canker[J]. Eur J Plant Pathol, 2021, 160(3): 683-692. |
[7] | Ferreira DH, Moreira RR, Silva Junior GJ, et al. Copper rate and spray interval for joint management of citrus canker and citrus black spot in orange orchards[J]. Eur J Plant Pathol, 2022, 163(4): 891-906. |
[8] | Sarrocco S. Biological disease control by beneficial(micro)organisms: selected breakthroughs in the past 50 years[J]. Phytopathology, 2023, 113(4): 732-740. |
[9] | Abdelaziz AM, Hashem AH, El-Sayyad GS, et al. Biocontrol of soil borne diseases by plant growth promoting rhizobacteria[J]. Trop Plant Pathol, 2023, 48(2): 105-127. |
[10] | Dutilloy E, Arias AA, Richet N, et al. Bacillus velezensis BE2 controls wheat and barley diseases by direct antagonism and induced systemic resistance[J]. Appl Microbiol Biotechnol, 2024, 108(1): 64. |
[11] | 段娇, 刘阳, 冯广达, 等. 柑橘溃疡病及其微生物防治研究进展[J]. 微生物学报, 2023, 63(5): 1944-1958. |
Duan J, Liu Y, Feng GD, et al. Research progress on citrus canker disease and its microbial control[J]. Acta Microbiol Sin, 2023, 63(5): 1944-1958. | |
[12] | Poveda J, Roeschlin RA, Marano MR, et al. Microorganisms as biocontrol agents against bacterial citrus diseases[J]. Biol Contr, 2021, 158: 104602. |
[13] | Nugroho YA, Suharjono S, Widyaningsih S. Biological control of citrus canker pathogen Xanthomonas citri subsp. citri using Rangpur lime endophytic bacteria[J]. Egypt J Biol Pest Contr, 2022, 32(1): 63. |
[14] | Zhou JY, Zhang Y, Xu WP, et al. Tug of war-who is the winner? Canker disease restructures the endophytic bacterial community of Citrus[J]. Hortic Sci Technol, 2023, 41(5): 605-616. |
[15] | 余沁涵. 柑橘溃疡病菌分离鉴定、全基因组测序及防治药剂筛选[D]. 湛江: 广东海洋大学, 2020. |
Yu QH. Isolation, identification, whole genome sequencing and bactericides screening of Xanthomonas citri subsp. citri[D]. Zhanjiang: Guangdong Ocean University, 2020. | |
[16] | Nauman M, Mushtaq S, Fahad Khan M, et al. Morphological, biochemical, and molecular characterization of Xanthomonas citri subsp. citri, cause of citrus canker disease in Pakistan[J]. Pak J Bot, 2023, 55(6): 2409-2421. |
[17] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Handbook of identification of common bacterial systems[M]. Beijing: Science Press, 2001. | |
[18] | Yang Q, Cahn JKB, Piel J, et al. Marine sponge endosymbionts: structural and functional specificity of the microbiome within Euryspongia arenaria cells[J]. Microbiol Spectr, 2022, 10(3): e0229621. |
[19] | Wang JJ, Wang JN, Wu SG, et al. Global geographic diversity and distribution of the myxobacteria[J]. Microbiol Spectr, 2021, 9(1): e0001221. |
[20] | Gao PF, Ma C, Sun Z, et al. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken[J]. Microbiome, 2017, 5(1): 91. |
[21] | Ali S, Hameed A, Muhae-Ud-Din G, et al. Citrus canker: a persistent threat to the worldwide citrus industry—an analysis[J]. Agronomy, 2023, 13(4): 1112. |
[22] | 王鹤. 柑橘溃疡病生防菌株筛选及药剂减量化研究[D]. 沈阳: 沈阳化工大学, 2022. |
Wang H. Screening of biocontrol strains against citrus canker and study on pesticide reduction[D]. Shenyang: Shenyang University of Chemical Technology, 2022. | |
[23] | 赵洪涛, 陈东奎, 陈香玲, 等. 沃柑溃疡病病原菌分离鉴定及防治药剂筛选[J]. 南方农业学报, 2019, 50(12): 2703-2712. |
Zhao HT, Chen DK, Chen XL, et al. Pathogen identification and bactericide screening of Orah citrus canker[J]. J South Agric, 2019, 50(12): 2703-2712. | |
[24] | 黄观荣, 邓志明, 张艳珍, 等. 柑橘溃疡病气象条件等级预测模型构建与应用[J]. 广东气象, 2023, 45(2): 70-73. |
Huang GR, Deng ZM, Zhang YZ, et al. Construction and application of meteorological condition grade prediction model for citrus canker[J]. Guangdong Meteorol, 2023, 45(2): 70-73. | |
[25] | Wang X, Liang LQ, Shao H, et al. Isolation of the novel strain Bacillus amyloliquefaciens F9 and identification of lipopeptide extract components responsible for activity against Xanthomonas citri subsp. citri[J]. Plants, 2022, 11(3): 457. |
[26] | Qian JL, Zhang T, Tang S, et al. Biocontrol of citrus canker with endophyte Bacillus amyloliquefaciens QC-Y[J]. Plant Prot Sci, 2020, 57(1): 1-13. |
[27] | Ahsan T, Zang CQ, Yu SY, et al. Screening, and optimization of fermentation medium to produce secondary metabolites from Bacillus amyloliquefaciens, for the biocontrol of early leaf spot disease, and growth promoting effects on peanut(Arachis hypogaea L.)[J]. J Fungi, 2022, 8(11): 1223. |
[28] | Murniasih T, Mardiana NA, Untari F, et al. Optimization of carbon and nitrogen source to enhance antibacterial activity from a sponge-derived Bacillus tequilensis[J]. Turk J Fish Aquat Sci, 2023, 24(2): 24222. |
[29] | Chaudhry V, Runge P, Sengupta P, et al. Shaping the leaf microbiota: plant-microbe-microbe interactions[J]. J Exp Bot, 2021, 72(1): 36-56. |
[30] | Gong TY, Xin XF. Phyllosphere microbiota: community dynamics and its interaction with plant hosts[J]. J Integr Plant Biol, 2021, 63(2): 297-304. |
[31] | Xiong Q, Yang J, Ni SY. Microbiome-mediated protection against pathogens in woody plants[J]. Int J Mol Sci, 2023, 24(22): 16118. |
[32] | Carvalho CR, Dias AC, Homma SK, et al. Phyllosphere bacterial assembly in citrus crop under conventional and ecological management[J]. PeerJ, 2020, 8: e9152. |
[33] | Jiang HB, Luo JY, Liu QH, et al. Rice bacterial leaf blight drives rhizosphere microbial assembly and function adaptation[J]. Microbiol Spectr, 2023, 11(6): e0105923. |
[34] | Huang F, Ling JF, Zhu CY, et al. Canker disease intensifies cross-Kingdom microbial interactions in the endophytic microbiota of Citrus phyllosphere[J]. Phytobiomes J, 2023, 7: 365-374. |
[35] | Ginnan NA, Dang T, Bodaghi S, et al. Disease-induced microbial shifts in citrus indicate microbiome-derived responses to huanglongbing across the disease severity spectrum[J]. Phytobiomes J, 2020, 4(4): 375-387. |
[36] | Xiao ZF, Lu CY, Wu ZY, et al. Continuous cropping disorders of eggplants(Solanum melongena L.)and tomatoes(Solanum lycopersicum L.) in suburban agriculture: Microbial structure and assembly processes[J]. Sci Total Environ, 2024, 909: 168558. |
[37] | Ahmed W, Dai ZL, Zhang JH, et al. Plant-microbe interaction: mining the impact of native Bacillus amyloliquefaciens WS-10 on tobacco bacterial wilt disease and rhizosphere microbial communities[J]. Microbiol Spectr, 2022, 10(4): e0147122. |
[38] | Flores-Núñez VM, Camarena-Pozos DA, Chávez-González JD, et al. Synthetic communities increase microbial diversity and productivity of Agave tequilana plants in the field[J]. Phytobiomes J, 2023, 7(4): 435-448. |
[1] | WANG Fang, YU Lu, QI Ze-zheng, ZHOU Chang-jun, YU Ji-dong. Screening and Biocontrol Effect of Antagonistic Bacteria against Soybean Root Rot [J]. Biotechnology Bulletin, 2024, 40(7): 216-225. |
[2] | FAN Zong-qiang, FENG Jing-han, ZHENG Li-xue, WANG Shuo, PENG Xiang-qian, CHEN Fang. Study on the Control and Induced Resistance in Cucumber with Bacillus subtilis B579 against Cucumber Fusarium Wilt [J]. Biotechnology Bulletin, 2024, 40(7): 226-234. |
[3] | XU Wei-fang, LI He-yu, ZHANG Hui, HE Zi-ang, GAO Wen-heng, XIE Zi-yang, WANG Chuan-wen, YIN Deng-ke. Efficacy and Its Mechanism of Bacterial Strain HX0037 on the Control of Anthracnose Disease of Trichosanthes kirilowii Maxim [J]. Biotechnology Bulletin, 2024, 40(4): 228-241. |
[4] | XU Pei-dong, YI Jian-feng, CHEN Di, PAN Lei, XIE Bing-yan, ZHAO Wen-jun. Research Progress in the Biocontrol Secondary Metabolites of Bacillus velezensis [J]. Biotechnology Bulletin, 2024, 40(3): 75-88. |
[5] | LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice [J]. Biotechnology Bulletin, 2024, 40(2): 109-119. |
[6] | WANG Nan, LIAO Yong-qin, SHI Zhu-feng, SHEN Yun-xin, YANG Tong-yu, FENG Lu-yao, YI Xiao-peng, TANG Jia-cai, CHEN Qi-bin, YANG Pei-wen. Identification of Three Strains of Bacillus from the Forest Soil of Wuliang Mountain and Mining of Their Bioactivities [J]. Biotechnology Bulletin, 2024, 40(2): 277-288. |
[7] | MA Yun-tao, HU Li-na, SUN Wen-jing, TANG Lian-geng, SUN Si-yuan, DENG Xin-yu, SUN Li. Screening and Identification of Antagonistic Bacterium JK2 Against Fire Blight Disease and the Optimization of Its Fermentation Conditions [J]. Biotechnology Bulletin, 2024, 40(11): 202-213. |
[8] | LI Xi, BIAN Zi-jun, NING Zhou-shen, LIU Hong-yu, ZENG Bing, DONG Wei. Studies on the Growth-promoting Effect of Bacillus Strain from Rhizosphere in Ionic Rare Earth Ores [J]. Biotechnology Bulletin, 2024, 40(11): 259-268. |
[9] | WANG Jun-fang, HUANG Qiu-bin, ZHANG Piao-dan, ZHANG Peng-pai. Structure and Biosynthesis of Surfactin as well as Its Role in Biological Control [J]. Biotechnology Bulletin, 2024, 40(1): 100-112. |
[10] | CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect [J]. Biotechnology Bulletin, 2023, 39(8): 262-271. |
[11] | ZHANG Le-le, WANG Guan, LIU Feng, HU Han-qiao, REN Lei. Isolation, Identification and Biocontrol Mechanism of an Antagonistic Bacterium Against Anthracnose on Mango Caused by Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2023, 39(4): 277-287. |
[12] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[13] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[14] | YANG Dong-ya, QI Rui-xue LI, Zhao-xuan , LIN Wei, MA Hui, ZHANG Xue-yan. Screening, Identification and Growth-promoting Effect of Antagonistic Bacillus spp. Against Cucumber Fusarium solani [J]. Biotechnology Bulletin, 2023, 39(2): 211-220. |
[15] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||