Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 192-201.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0423
Previous Articles Next Articles
WANG Zi-rui(), LIU Xiao-han, XIU Yu, LIN Shan-zhi()
Received:
2024-05-08
Online:
2024-11-26
Published:
2024-12-19
Contact:
LIN Shan-zhi
E-mail:1290459671@qq.com;linsz2002@163.com
WANG Zi-rui, LIU Xiao-han, XIU Yu, LIN Shan-zhi. Cloning of the Promoter of MATE40 Gene from Prunus sibirica Seeds and Analysis of Gene Expression Driven by Promoter[J]. Biotechnology Bulletin, 2024, 40(11): 192-201.
PCR扩增轮数Rounds of PCR amplification | PCR扩增程序PCR amplification procedure |
---|---|
第一轮PCR | 94℃ 1 min; 98℃ 1 min; 94℃ 30 s, 65℃ 1 min, 72℃ 4 min, 5个循环; 94℃ 30 s, 25℃ 3 min, 72℃ 2 min; 94℃ 30 s, 65℃ 1 min, 72℃ 2 min, 15个循环; 72℃ 10 min |
第二轮PCR | 94℃ 30 s, 65℃ 1 min, 72℃ 2 min, 98℃ 30 s, 65℃ 1 min, 72℃ 2 min, 94℃ 30 s, 65℃ 1 min, 72℃ 2 min, 15个循环; 72℃ 10 min |
第三轮PCR | 94℃ 30 s, 65℃ 1 min, 72℃ 2 min, 98℃ 30 s, 65℃ 1 min, 72℃ 2 min, 94℃ 30 s, 65℃ 1 min, 72℃ 2 min, 15个循环; 72℃ 10 min |
Table 1 Genome Walking kit three-round PCR amplification procedure
PCR扩增轮数Rounds of PCR amplification | PCR扩增程序PCR amplification procedure |
---|---|
第一轮PCR | 94℃ 1 min; 98℃ 1 min; 94℃ 30 s, 65℃ 1 min, 72℃ 4 min, 5个循环; 94℃ 30 s, 25℃ 3 min, 72℃ 2 min; 94℃ 30 s, 65℃ 1 min, 72℃ 2 min, 15个循环; 72℃ 10 min |
第二轮PCR | 94℃ 30 s, 65℃ 1 min, 72℃ 2 min, 98℃ 30 s, 65℃ 1 min, 72℃ 2 min, 94℃ 30 s, 65℃ 1 min, 72℃ 2 min, 15个循环; 72℃ 10 min |
第三轮PCR | 94℃ 30 s, 65℃ 1 min, 72℃ 2 min, 98℃ 30 s, 65℃ 1 min, 72℃ 2 min, 94℃ 30 s, 65℃ 1 min, 72℃ 2 min, 15个循环; 72℃ 10 min |
表达载体 Expression vector | 引物Primer | 引物序列Primer sequence(5'-3') |
---|---|---|
pBI121-ProPsMATE40::GUS | Q121 F | TATGACCATGATTACGCCAAGCTT CACATCTTCCTCCAAATC |
Q121 R | CTGACCACCCGGGGATCCTCTAGACATTTAGGGAAGAAGCCA | |
pBI121-35S::PsMATE40av | 35S-121 F | TGGAGAGAACACGGGGGACTCTCCCTGCTTAATTTGCTCCACCCC |
35S-121 R | TGGTGGCGACCGGTACCCGGGCGCTCAAGTTGCTGTCCATCTGTTT | |
pBI121-ProPsMATE40::PsMATE40 | MATE-121 F | GAACACGGGGGACTCTAGAGCTCCCTGCTTAATTTGCTCCACCCC |
MATE-121 R | TAAGGGACTGACCACCCGGGCGCTCAAGTTGCTGTCCATCTGTTT |
Table 2 Specific primers for seamless cloning of the promoter of PsMATE40 gene
表达载体 Expression vector | 引物Primer | 引物序列Primer sequence(5'-3') |
---|---|---|
pBI121-ProPsMATE40::GUS | Q121 F | TATGACCATGATTACGCCAAGCTT CACATCTTCCTCCAAATC |
Q121 R | CTGACCACCCGGGGATCCTCTAGACATTTAGGGAAGAAGCCA | |
pBI121-35S::PsMATE40av | 35S-121 F | TGGAGAGAACACGGGGGACTCTCCCTGCTTAATTTGCTCCACCCC |
35S-121 R | TGGTGGCGACCGGTACCCGGGCGCTCAAGTTGCTGTCCATCTGTTT | |
pBI121-ProPsMATE40::PsMATE40 | MATE-121 F | GAACACGGGGGACTCTAGAGCTCCCTGCTTAATTTGCTCCACCCC |
MATE-121 R | TAAGGGACTGACCACCCGGGCGCTCAAGTTGCTGTCCATCTGTTT |
基因 Gene | 引物 Primer | 序列 Sequence(5'-3') |
---|---|---|
GUS | GUS-F | GAATACGGCGTGGATACGTTAG |
GUS-R | GATCAAAGACGCGGTGATACA | |
PsMATE40 | PsMATE40-F | AACAATGGCATCCAAGTTTTCGCCT |
PsMATE40-R | GGAGCACACCAGTCAAAGTTAAGAG | |
Actin | NtActin-F | CTGCTGGAATTCACGAAACA |
NtActin-R | GCCACCACCTTGATCTTCAT |
Table 3 Primers for the RT-qPCR detections of PsMATE40 and GUS genes
基因 Gene | 引物 Primer | 序列 Sequence(5'-3') |
---|---|---|
GUS | GUS-F | GAATACGGCGTGGATACGTTAG |
GUS-R | GATCAAAGACGCGGTGATACA | |
PsMATE40 | PsMATE40-F | AACAATGGCATCCAAGTTTTCGCCT |
PsMATE40-R | GGAGCACACCAGTCAAAGTTAAGAG | |
Actin | NtActin-F | CTGCTGGAATTCACGAAACA |
NtActin-R | GCCACCACCTTGATCTTCAT |
Fig. 1 Amplified identification of the known sequence at the 5' end for PsMATE40 gene from P. sibirica seeds A: PCR amplification electrophoretic map of the sequence at the 5' end of PsMATE40 gene from P. sibirica seeds, M is 2000 DNA marker, and 1 is PsMATE40 gene fragment. B: Alignment results of sequenced sequences and known sequences at the 5' end of PsMATE40 gene. Sequenced sequence and known sequence are the ORF at the 5' end of PsMATE40 gene
Fig. 2 PCR amplification of full-length sequence of PsMATE40 gene promoter from P. sibirica seeds A: The first three-round step electrophoretic map for PsMATE40 gene promoter from P. sibirica seeds, AP1, AP2, AP3 and AP4 are the upstream degenerate primers, M was 2000 DNA marker, and 1, 2 and 3 are the results of the 1st, 2nd and 3rd PCR, respectively. B: The second three-round step electrophoretic map for PsMATE40 gene promoter from P. sibirica seeds, AP1, AP2, AP3 and AP4 are the upstream degenerate primers, M is 2000 DNA marker, and 1, 2 and 3 are the results of the 1st, 2nd and 3rd PCR, respectively. C: Amplification electrophoretic map for the promoter of PsMATE40 gene from P. sibirica seeds, M is 2000 DNA marker, and 1 is PsMATE40 gene fragment
Fig. 3 Sequence analysis of the PsMATE40 gene promoter from P. sibirica seeds The transcription start site is defined as +1, and the putative cis-acting regulatory elements is marked with different colors
顺式作用元件名称 Cis-acting element name | 序列 Sequence | 位置 Position/bp | 数目 Amount | 功能 Function |
---|---|---|---|---|
核心启动子元件 | ||||
TATA-box | ATTATA | -75/-69, -250/-244, -476/-472, -509/-503, -720/-714, -746/-742, -1215/-1211, -1784/-1774 | 8 | 转录起始核心元件 |
CAAT-box | CAAT | -42/-36, -89/-84, -236/-232, -278/-274, -382/-378, -616/-611, -655/-650, -736/-732, -935/-930, -1140/-1136, -1262/-1258, -1499/-1495, -1952/-1947 | 13 | 启动子核心作用元件 |
激素响应元件 | ||||
ERE | ATTTCATA | -211/-203, -1836/-1828 | 2 | 参与乙烯响应 |
CATATG-box | CATATG | -341/-335, -1790/-1784 | 2 | 参与生长素响应 |
CGTCA-motif | CGTCA | -554/-549, -1054/-1049 | 2 | 参与茉莉酸甲酯响应 |
TCA | TCATCTTCAT | -413/-403 | 1 | 参与水杨酸响应 |
胁迫响应元件 | ||||
TC-rich repeats | GTTTTCTTAC | -1301/-1291 | 1 | 防御和应激反应 |
W-box | TGACC | -751/-747, -1128/-1123, -1332/-1328, -1753/-1748 | 4 | 结合WRKY转录因子 |
MYB | CAACAG | -843/-837, -1393/-1387 | 2 | 结合MYB 转录因子 |
MYC | CAATTG | -676/-670, -1079/-1073, -1088/-1082, -1400/-1394 | 4 | 干旱响应 |
WRE3 | CCACCT | -1644/-1638 | 1 | 损伤响应 |
AE-box | AGAAACTT | -1747/-1739 | 1 | 光响应 |
Box 4 | ATTAAT | -394/-388, -594/-584 | 2 | 光响应 |
GATA-motif | GATA | -539/-535, -1205/-1201, -1759/-1755, -1795/-1791 | 4 | 光响应 |
GT1-motif | GGTTAA | -790/-784 | 1 | 光响应 |
种子或胚乳调控元件 | ||||
DOF | AAAG | -854/-850, -918/-914, -1681/-1677, -1699/-1695 | 4 | 种子特异表达调控 |
SEF1-motif | ATATTTAA | -143/-135 | 1 | 种子发育相关 |
PYRIMIDINE-box | CCTTTT | -1377/-1371 | 1 | 种子发育相关 |
ACGTC-box | ACGTC | -1543/-1538 | 1 | 种子发育相关 |
PROLAMIN-box | TGCAAAG | -930/-923 | 1 | 胚乳特异表达调控 |
DPBF | ACACAGG | -1735/-1728 | 1 | 胚乳发育相关 |
Table 4 Analyses of cis-acting regulatory elements in the PsMATE40 gene promoter from P. sibirica seeds
顺式作用元件名称 Cis-acting element name | 序列 Sequence | 位置 Position/bp | 数目 Amount | 功能 Function |
---|---|---|---|---|
核心启动子元件 | ||||
TATA-box | ATTATA | -75/-69, -250/-244, -476/-472, -509/-503, -720/-714, -746/-742, -1215/-1211, -1784/-1774 | 8 | 转录起始核心元件 |
CAAT-box | CAAT | -42/-36, -89/-84, -236/-232, -278/-274, -382/-378, -616/-611, -655/-650, -736/-732, -935/-930, -1140/-1136, -1262/-1258, -1499/-1495, -1952/-1947 | 13 | 启动子核心作用元件 |
激素响应元件 | ||||
ERE | ATTTCATA | -211/-203, -1836/-1828 | 2 | 参与乙烯响应 |
CATATG-box | CATATG | -341/-335, -1790/-1784 | 2 | 参与生长素响应 |
CGTCA-motif | CGTCA | -554/-549, -1054/-1049 | 2 | 参与茉莉酸甲酯响应 |
TCA | TCATCTTCAT | -413/-403 | 1 | 参与水杨酸响应 |
胁迫响应元件 | ||||
TC-rich repeats | GTTTTCTTAC | -1301/-1291 | 1 | 防御和应激反应 |
W-box | TGACC | -751/-747, -1128/-1123, -1332/-1328, -1753/-1748 | 4 | 结合WRKY转录因子 |
MYB | CAACAG | -843/-837, -1393/-1387 | 2 | 结合MYB 转录因子 |
MYC | CAATTG | -676/-670, -1079/-1073, -1088/-1082, -1400/-1394 | 4 | 干旱响应 |
WRE3 | CCACCT | -1644/-1638 | 1 | 损伤响应 |
AE-box | AGAAACTT | -1747/-1739 | 1 | 光响应 |
Box 4 | ATTAAT | -394/-388, -594/-584 | 2 | 光响应 |
GATA-motif | GATA | -539/-535, -1205/-1201, -1759/-1755, -1795/-1791 | 4 | 光响应 |
GT1-motif | GGTTAA | -790/-784 | 1 | 光响应 |
种子或胚乳调控元件 | ||||
DOF | AAAG | -854/-850, -918/-914, -1681/-1677, -1699/-1695 | 4 | 种子特异表达调控 |
SEF1-motif | ATATTTAA | -143/-135 | 1 | 种子发育相关 |
PYRIMIDINE-box | CCTTTT | -1377/-1371 | 1 | 种子发育相关 |
ACGTC-box | ACGTC | -1543/-1538 | 1 | 种子发育相关 |
PROLAMIN-box | TGCAAAG | -930/-923 | 1 | 胚乳特异表达调控 |
DPBF | ACACAGG | -1735/-1728 | 1 | 胚乳发育相关 |
Fig. 4 Driven activity analysis of PsMATE40 gene promoter from P. sibirica seeds A: Histochemical staining analysis of GUS in transformed tobacco leaves, WT is wild type plant, 35S::GUS is positive control, and ProPsMATE40::GUS is tobacco leaf with GUS expression driven by PsMATE40 gene promoter. B: Detection of GUS expression by RT-qPCR, the expression of GUS gene in the leaves driven by PsMATE40 gene promoter is arbitrarily set to 1 for standardization
Fig. 5 Expression analysis of PsMATE40 driven by specific promoter ProPsMATE40 gene from P. sibirica seeds A: PCR identification of the positive colonies, M is 2000 DNA marker; 1 and 2 are PCR products of the positive colonies of pBI121-ProPsMATE40::GUS expression vector, and 3 and 4 are PCR products of positive colonies of pBI121-35S::PsMATE40 expression vector. B: Expression analysis of PsMATE40 gene transiently transformed in tobacco leaves, the expression of PsMATE40 gene in the leaves driven by 35S promoter is arbitrarily set to 1 for standardization
[1] | 王利兵. 我国3种杏的地理分布及其植物学性状[J]. 林业科学研究, 2010, 23(3): 435-439. |
Wang LB. Geographic distrbution and botanical characters of 3 Armeniaca plant in China[J]. For Res, 2010, 23(3): 435-439. | |
[2] | 刘潇菡, 林子欣, 修宇, 等. 山杏种子MATE家族分析及其重要成员MATE40克隆表达[J]. 生物技术通报, 2021, 37(11): 197-211. |
Liu XH, Lin ZX, Xiu Y, et al. Analysis of the MATE family in the seeds of Prunus sibirica and cloning and expression of its important member MATE40[J]. Biotechnol Bull, 2021, 37(11): 197-211. | |
[3] | 党瑗, 李维, 苗向, 等. 山杏油体蛋白基因PsOLE4克隆及其调控油脂累积功能分析[J]. 生物技术通报, 2022, 38(11): 151-161. |
Dang Y, Li W, Miao X, et al. Cloning of oleosin gene PsOLE4 from Prunus sibirica and its regulatory function analysis for oil accumulation[J]. Biotechnol Bull, 2022, 38(11): 151-161. | |
[4] | Wang J, Lin WJ, Yin ZD, et al. Comprehensive evaluation of fuel properties and complex regulation of intracellular transporters for high oil production in developing seeds of Prunus sibirica for woody biodiesel[J]. Biotechnol Biofuels, 2019, 12: 6. |
[5] | Hu JH, Chen F, Zang JX, et al. Native promoter-mediated transcriptional regulation of crucial oleosin protein OLE1 from Prunus sibirica for seed development and high oil accumulation[J]. Int J Biol Macromol, 2023, 253(Pt 1): 126650. |
[6] | Niu J, An JY, Wang LB, et al. Transcriptomic analysis revealed the mechanism of oil dynamic accumulation during developing Siberian apricot(Prunus sibirica L.) seed kernels for the development of woody biodiesel[J]. Biotechnol Biofuels, 2015, 8: 29. |
[7] | Niu J, Wang J, An JY, et al. Integrated mRNA and miRNA transcriptome reveal a cross-talk between developing response and hormone signaling for the seed kernels of Siberian apricot[J]. Sci Rep, 2016, 6: 35675. |
[8] | Fan SQ, Liang TY, Yu HY, et al. Kernel characteristics, oil contents, fatty acid compositions and biodiesel properties in developing Siberian apricot(Prunus sibirica L.) seeds[J]. Ind Crops Prod, 2016, 89: 195-199. |
[9] | Chang HK, Shin MS, Yang HY, et al. Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells[J]. Biol Pharm Bull, 2006, 29(8): 1597-1602. |
[10] | Gleadow RM, Møller BL. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity[J]. Annu Rev Plant Biol, 2014, 65: 155-185. |
[11] | Del Cueto J, Ionescu IA, Pičmanová M, et al. Cyanogenic glucosides and derivatives in almond and sweet cherry flower buds from dormancy to flowering[J]. Front Plant Sci, 2017, 8: 800. |
[12] | Brown MH, Paulsen IT, Skurray RA. The multidrug efflux protein NorM is a prototype of a new family of transporters[J]. Mol Microbiol, 1999, 31(1): 394-395. |
[13] | Wang LH, Bei XJ, Gao JS, et al. The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana[J]. BMC Plant Biol, 2016, 16(1): 207. |
[14] | Diener AC, Gaxiola RA, Fink GR. Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins[J]. Plant Cell, 2001, 13(7): 1625-1638. |
[15] | Li NN, Meng HJ, Xing HT, et al. Genome-wide analysis of MATE transporters and molecular characterization of aluminum resistance in Populus[J]. J Exp Bot, 2017, 68(20): 5669-5683. |
[16] | Li YQ, He HY, He LF. Genome-wide analysis of the MATE gene family in potato[J]. Mol Biol Rep, 2019, 46(1): 403-414. |
[17] | Dong BY, Niu LL, Meng D, et al. Genome-wide analysis of MATE transporters and response to metal stress in Cajanus cajan[J]. J Plant Interact, 2019, 14(1): 265-275. |
[18] | Upadhyay N, Kar D, Deepak Mahajan B, et al. The multitasking abilities of MATE transporters in plants[J]. J Exp Bot, 2019, 70(18): 4643-4656. |
[19] | Darbani B, Motawia MS, Olsen CE, et al. The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter[J]. Sci Rep, 2016, 6: 37079. |
[20] | Kummari D, Palakolanu SR, Kishor PBK, et al. An update and perspectives on the use of promoters in plant genetic engineering[J]. J Biosci, 2020, 45: 119. |
[21] | Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements[J]. Plant Sci, 2014, 217/218: 109-119. |
[22] | Shahmuradov IA, Umarov RK, Solovyev VV. TSSPlant: a new tool for prediction of plant Pol II promoters[J]. Nucleic Acids Res, 2017, 45(8): e65. |
[23] | Zhang ML, Lv YD, Wang Y, et al. TATA box insertion provides a selection mechanism underpinning adaptations to Fe deficiency[J]. Plant Physiol, 2017, 173(1): 715-727. |
[24] | Zheng HQ, Lin SZ, Zhang Q, et al. Functional identification and regulation of the PtDrl02 gene promoter from triploid white poplar[J]. Plant Cell Rep, 2010, 29(5): 449-460. |
[25] | Himmelbach A, Liu L, Zierold U, et al. Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack[J]. Plant Cell, 2010, 22(3): 937-952. |
[26] | Shen H, He XZ, Poovaiah CR, et al. Functional characterization of the switchgrass(Panicum virgatum )R2R3-MYB transcription factor PvMYB 4 for improvement of lignocellulosic feedstocks[J]. New Phytol, 2012, 193(1): 121-136. |
[27] | Kawakatsu T, Takaiwa F. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains[J]. Plant Biotechnol J, 2010, 8(9): 939-953. |
[28] | Sunkara S, Bhatnagar-Mathur P, Sharma KK. Isolation and functional characterization of a novel seed-specific promoter region from peanut[J]. Appl Biochem Biotechnol, 2014, 172(1): 325-339. |
[29] | Zavallo D, Lopez Bilbao M, Hopp HE, et al. Isolation and functional characterization of two novel seed-specific promoters from sunflower(Helianthus annuus L.)[J]. Plant Cell Rep, 2010, 29(3): 239-248. |
[1] | QIAO Yan, YANG Fang, REN Pan-rong, QI Wei-liang, AN Pei-pei, LI Qian, LI Dan, XIAO Jun-fei. Cloning and Function Analysis of the ScDHNS Gene of Crotonase/Enoyl-CoA Superfamily from a Wild Potato Species [J]. Biotechnology Bulletin, 2024, 40(9): 92-103. |
[2] | SHEN Zhen-hui, CAO Yao, YANG Lin-lei, LUO Xiang-ying, ZI Ling-shan, LU Qing-qing, LI Rong-chun. Cloning and Bioinformatics Analysis of the Ergothioneine Biosynthesis Genes in Naematelia aurantialba and Stereum hirsutum [J]. Biotechnology Bulletin, 2024, 40(7): 259-272. |
[3] | HUANG Dan, JIANG Shan, PENG Tao. Cloning of FfCYP98 Gene and Its Functional Analysis in Folioceros fuciformis [J]. Biotechnology Bulletin, 2024, 40(7): 273-284. |
[4] | PANG Meng-zhen, XU Han-qin, LIU Hai-yan, SONG Juan, WANG Jia-han, SUN Li-na, JI Pei-mei, YIN Ze-zhi, HU You-chuan, ZHAO Xiao-meng, LIANG Shan-shan, ZHANG Si-ju, LUAN Wei-jiang. Gene Identification and Functional Analysis of Yellowish and Early Heading Mutant hz1 in Rice [J]. Biotechnology Bulletin, 2024, 40(7): 125-136. |
[5] | WANG Yu-shu, ZHAO Lin-lin, ZHAO Shuang, HU Qi, BAI Hui-xia, WANG Huan, CAO Ye-ping, FAN Zhen-yu. Cloning and Expression Analysis of BrCYP83B1 Gene in Chinese Cabbage [J]. Biotechnology Bulletin, 2024, 40(6): 152-160. |
[6] | HAO Si-yi, ZHANG Jun-ke, WANG Bin, QU Peng-yan, LI Rui-de, CHENG Chun-zhen. Cloning and Expression Analysis of Banana EARLY FLOWERING 3(ELF3)Genes [J]. Biotechnology Bulletin, 2024, 40(5): 131-140. |
[7] | DU Ze-guang, REN Shao-wen, ZHANG Feng-qin, LI Mei-lan, LI Gai-zhen, QI Xian-hui. Cloning,Expression and Functional Identification of BrMLP328 Gene in Brassica rapa subsp. pekinensis [J]. Biotechnology Bulletin, 2024, 40(4): 122-129. |
[8] | LIU Huan-huan, YANG Li-chun, LI Huo-gen. Cloning and Functional Analysis of LtMYB305 in Liriodendron tulipifera [J]. Biotechnology Bulletin, 2024, 40(4): 179-188. |
[9] | ZHONG Yun, LIN Chun, LIU Zheng-jie, DONG Chen-wen-hua, MAO Zi-chao, LI Xing-yu. Cloning and Prokaryotic Expression Analysis of Asparagus Saponin Synthesis Related Glycosyltransferase Genes [J]. Biotechnology Bulletin, 2024, 40(4): 255-263. |
[10] | YANG Yan, HU Yang, LIU Ni-ru, YIN Lu, YANG Rui, WANG Peng-fei, MU Xiao-peng, ZHANG Shuai, CHENG Chun-zhen, ZHANG Jian-cheng. Cloning and Functional Analysis of MbbZIP43 Gene in ‘Hongmantang’ Red-flesh Apple [J]. Biotechnology Bulletin, 2024, 40(2): 146-159. |
[11] | ZHU Yi, LIU Tang-jing, GONG Guo-yi, ZHANG Jie, WANG Jin-fang, ZHANG Hai-ying. Cloning and Expression Analysis of ClPP2C3 in Citrullus lanatus [J]. Biotechnology Bulletin, 2024, 40(1): 243-249. |
[12] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[13] | WANG Jia-rui, SUN Pei-yuan, KE Jin, RAN Bin, LI Hong-you. Cloning and Expression Analyses of C-glycosyltransferase Gene FtUGT143 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 204-212. |
[14] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[15] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||