Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (1): 324-332.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0540
Previous Articles Next Articles
WEN Jing1(
), LI Qian-qian1, ZHANG Ming-da1, TAN Ming-yue1, JIN Bo-yang1, SHEN XIU-li2, DU Zhi-qiang1(
)
Received:2024-06-06
Online:2025-01-26
Published:2025-01-22
Contact:
DU Zhi-qiang
E-mail:wj1483604284@163.com;nmdzq1981@163.com
WEN Jing, LI Qian-qian, ZHANG Ming-da, TAN Ming-yue, JIN Bo-yang, SHEN XIU-li, DU Zhi-qiang. Molecular Mechanism of Duox 2 Regulating Innate Immunity against Bacteria in Procambarus clarkii Intestine[J]. Biotechnology Bulletin, 2025, 41(1): 324-332.
| 引物Primer | 引物序列Primer sequence(5'-3') |
|---|---|
| Pc-Duox 2-iF | GCGTAATACGACTCACTATAGGGTGATGAAAAATGCGTTT |
| Pc-Duox 2-iR | GCGTAATACGACTCACTATAGGAAAGATGTCTCCCTGAAG |
| Pc-GFP-iF | GCGTAATACGACTCACTATAGGCGAGCTGGACGGCGACGTAAAC |
| Pc-GFP-iR | GCGTAATACGACTCACTATAGGCTTGAAGTTCACCTTGATGCC |
| Pc-Duox 2-RT-F | GCTGCCCAAGTTTCACTA |
| Pc-Duox 2-RT-R | AAAGGAGGCTGCACCAGC |
| 18 S rRNA-RT-F | TCTTCTTAGAGGGATTAGCGG |
| 18 S rRNA-RT-R | AAGGGGATTGAACGGGTTA |
| Pc-toll 1-RT-F | GACTTGTCCAAAAACGATATACG |
| Pc-toll 1-RT-R | TGCGTTACAGTAGTGAGCGAA |
| Pc-toll 3-RT-F | TCATTTGGCATCTGGCTCAC |
| Pc-toll 3-RT-R | GCAGGTGGTGGCGTTGA |
| Pc-ALF 1-RT-F | CGAGAGGCTGTAGAGGATGC |
| Pc-ALF 1-RT-R | CCCAGTTTGTTGATGATGAG |
| Pc-lysozyme-RT-F | GTCAACCCACCCTCAATAAC |
| Pc-lysozyme-RT-R | CTTGTGAATCAGGGCGTA |
Table 1 Primer list
| 引物Primer | 引物序列Primer sequence(5'-3') |
|---|---|
| Pc-Duox 2-iF | GCGTAATACGACTCACTATAGGGTGATGAAAAATGCGTTT |
| Pc-Duox 2-iR | GCGTAATACGACTCACTATAGGAAAGATGTCTCCCTGAAG |
| Pc-GFP-iF | GCGTAATACGACTCACTATAGGCGAGCTGGACGGCGACGTAAAC |
| Pc-GFP-iR | GCGTAATACGACTCACTATAGGCTTGAAGTTCACCTTGATGCC |
| Pc-Duox 2-RT-F | GCTGCCCAAGTTTCACTA |
| Pc-Duox 2-RT-R | AAAGGAGGCTGCACCAGC |
| 18 S rRNA-RT-F | TCTTCTTAGAGGGATTAGCGG |
| 18 S rRNA-RT-R | AAGGGGATTGAACGGGTTA |
| Pc-toll 1-RT-F | GACTTGTCCAAAAACGATATACG |
| Pc-toll 1-RT-R | TGCGTTACAGTAGTGAGCGAA |
| Pc-toll 3-RT-F | TCATTTGGCATCTGGCTCAC |
| Pc-toll 3-RT-R | GCAGGTGGTGGCGTTGA |
| Pc-ALF 1-RT-F | CGAGAGGCTGTAGAGGATGC |
| Pc-ALF 1-RT-R | CCCAGTTTGTTGATGATGAG |
| Pc-lysozyme-RT-F | GTCAACCCACCCTCAATAAC |
| Pc-lysozyme-RT-R | CTTGTGAATCAGGGCGTA |
Fig. 1 Expression patterns of Duox 2 gene in P. clarkii stimulated by S. aureus Different letters indicate significant differences(P < 0.05). The error bar indicates three repeated standard deviations(SD), the same below
| [1] | 邓灵, 赵康, 夏开, 等. 小龙虾(Procambarus clarkia)加工前后优势腐败菌的分离与鉴定[J]. 食品工业科技, 2020, 41(18): 100-104. |
| Deng L, Zhao K, Xia K, et al. Isolation and identification of specific spoilage organisms in crayfish(Procambarus clarkii)before and after processing[J]. Sci Technol Food Ind, 2020, 41(18): 100-104. | |
| [2] |
Arfatahery N, Davoodabadi A, Abedimohtasab T. Characterization of toxin genes and antimicrobial susceptibility of Staphylococcus aureus isolates in fishery products in Iran[J]. Sci Rep, 2016, 6: 34216.
doi: 10.1038/srep34216 pmid: 27694813 |
| [3] | Shandilya S, Kumar S, Kumar JN, et al. Interplay of gut microbiota and oxidative stress: perspective on neurodegeneration and neuroprotection[J]. J Adv Res, 2021, 38: 223-244. |
| [4] | Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants[J]. Oxid Med Cell Longev, 2013, 2013: 956792. |
| [5] | Yang HT, Yang MC, Sun JJ, et al. Catalase eliminates reactive oxygen species and influences the intestinal microbiota of shrimp[J]. Fish Shellfish Immunol, 2015, 47(1): 63-73. |
| [6] | De Deken X, Corvilain B, Dumont JE, et al. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling[J]. Antioxid Redox Signal, 2014, 20(17): 2776-2793. |
| [7] |
Hazime H, Ducasa GM, Santander AM, et al. Intestinal epithelial inactivity of dual oxidase 2 results in microbiome-mediated metabolic syndrome[J]. Cell Mol Gastroenterol Hepatol, 2023, 16(4): 557-572.
doi: 10.1016/j.jcmgh.2023.06.009 pmid: 37369278 |
| [8] |
Sommer F, Bäckhed F. The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium[J]. Mucosal Immunol, 2015, 8(2): 372-379.
doi: 10.1038/mi.2014.74 pmid: 25160818 |
| [9] | Lee KA, Kim B, You H, et al. Uracil-induced signaling pathways for DUOX-dependent gut immunity[J]. Fly, 2015, 9(3): 115-120. |
| [10] | Yang QH, Sun ZQ, Zhou YL, et al. SpATF2 participates in maintaining the homeostasis of hemolymph microbiota by regulating dual oxidase expression in mud crab[J]. Fish Shellfish Immunol, 2020, 104: 252-261. |
| [11] | Liu ZG, Zhang HY, Lemaitre B, et al. Duox activation in Drosophila Malpighian tubules stimulates intestinal epithelial renewal through a countercurrent flow[J]. Cell Rep, 2024, 43(4): 114109. |
| [12] |
Dias RO, Cardoso C, Pimentel AC, et al. The roles of mucus-forming mucins, peritrophins and peritrophins with mucin domains in the insect midgut[J]. Insect Mol Biol, 2018, 27(1): 46-60.
doi: 10.1111/imb.12340 pmid: 28833767 |
| [13] | Zeng T, Jaffar S, Xu YJ, et al. The intestinal immune defense system in insects[J]. Int J Mol Sci, 2022, 23(23): 15132. |
| [14] | Zhou YL, Wang LZ, Gu WB, et al. Identification and functional analysis of immune deficiency(IMD)from Scylla paramamosain: the first evidence of IMD signaling pathway involved in immune defense against bacterial infection in crab species[J]. Fish Shellfish Immunol, 2018, 81: 150-160. |
| [15] | Li HY, Li QY, Wang S, et al. Stimulator of interferon genes defends against bacterial infection via IKKβ-mediated Relish activation in shrimp[J]. Front Immunol, 2022, 13: 977327. |
| [16] | Ha EM, Lee KA, Seo YY, et al. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut[J]. Nat Immunol, 2009, 10(9): 949-957. |
| [17] | Donkó Á, Péterfi Z, Sum A, et al. Dual oxidases[J]. Phil Trans R Soc B, 2005, 360(1464): 2301-2308. |
| [18] | Sun ZQ, Hao SF, Gong Y, et al. Dual oxidases participate in the regulation of hemolymph microbiota homeostasis in mud crab Scylla paramamosain[J]. Dev Comp Immunol, 2018, 89: 111-121. |
| [19] | Inada M, Kihara K, Kono T, et al. Deciphering of the Dual oxidase(Nox family)gene from kuruma shrimp, Marsupenaeus japonicus: full-length cDNA cloning and characterization[J]. Fish Shellfish Immunol, 2013, 34(2): 471-485. |
| [20] |
Schweikl H, Godula M, Petzel C, et al. Critical role of superoxide anions and hydroxyl radicals in HEMA-induced apoptosis[J]. Dent Mater, 2017, 33(1): 110-118.
doi: S0109-5641(16)30620-0 pmid: 27887776 |
| [21] | He HH, Chi YM, Yuan K, et al. Functional characterization of a reactive oxygen species modulator 1 gene in Litopenaeus vannamei[J]. Fish Shellfish Immunol, 2017, 70: 270-279. |
| [22] | Zhang L, Wang K, Lei YL, et al. Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response[J]. Free Radic Biol Med, 2015, 89: 452-465. |
| [23] | de Almeida AJPO, de Oliveira JCPL, da Silva Pontes LV, et al. ROS: basic concepts, sources, cellular signaling, and its implications in aging pathways[J]. Oxid Med Cell Longev, 2022, 2022: 1225578. |
| [24] | Ray PD, Huang BW, Tsuji Y. Reactive oxygen species(ROS)homeostasis and redox regulation in cellular signaling[J]. Cell Signal, 2012, 24(5): 981-990. |
| [25] | Dryden M. Reactive oxygen species: a novel antimicrobial[J]. Int J Antimicrob Agents, 2018, 51(3): 299-303. |
| [26] | Wu XF, Yang MY, Kim JS, et al. Reactivity differences enable ROS for selective ablation of bacteria[J]. Angew Chem Int Ed Engl, 2022, 61(17): e202200808. |
| [27] | Nie JJ, Yu ZX, Yao DF, et al. Litopenaeus vannamei sirtuin 6 homolog(LvSIRT6)is involved in immune response by modulating hemocytes ROS production and apoptosis[J]. Fish Shellfish Immunol, 2020, 98: 271-284. |
| [28] | Benguettat O, Jneid R, Soltys J, et al. The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria[J]. PLoS Pathog, 2018, 14(9): e1007279. |
| [29] |
Mukherjee S, Hooper LV. Antimicrobial defense of the intestine[J]. Immunity, 2015, 42(1): 28-39.
doi: 10.1016/j.immuni.2014.12.028 pmid: 25607457 |
| [30] | Tassanakajon A, Somboonwiwat K, Supungul P, et al. Discovery of immune molecules and their crucial functions in shrimp immunity[J]. Fish Shellfish Immunol, 2013, 34(4): 954-967. |
| [31] | Yang L, Qiu LM, Fang Q, et al. Cellular and humoral immune interactions between Drosophila and its parasitoids[J]. Insect Sci, 2021, 28(5): 1208-1227. |
| [32] | Yu SC, Luo FZ, Xu YY, et al. Drosophila innate immunity involves multiple signaling pathways and coordinated communication between different tissues[J]. Front Immunol, 2022, 13: 905370. |
| [33] | Ding D, Sun XJ, Yan M, et al. The ECSIT mediated Toll3-dorsal-ALFs pathway inhibits bacterial amplification in kuruma shrimp[J]. Front Immunol, 2022, 13: 807326. |
| [34] | Li HY, Yin B, Wang S, et al. RNAi screening identifies a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobial peptides[J]. PLoS Pathog, 2018, 14(9): e1007109. |
| [35] | Wang Z, Chen YH, Dai YJ, et al. A novel vertebrates Toll-like receptor counterpart regulating the anti-microbial peptides expression in the freshwater crayfish, Procambarus clarkii[J]. Fish Shellfish Immunol, 2015, 43(1): 219-229. |
| [36] | Zhang HQ, Cheng WZ, Zheng LB, et al. Identification of a group D anti-lipopolysaccharide factor(ALF)from kuruma prawn(Marsupenaeus japonicus)with antibacterial activity against Vibrio parahaemolyticus[J]. Fish Shellfish Immunol, 2020, 102: 368-380. |
| [37] | Marra A, Hanson MA, Kondo S, et al. Drosophila antimicrobial peptides and lysozymes regulate gut microbiota composition and abundance[J]. mBio, 2021, 12(4): e0082421. |
| [1] | WANG Ke-ran, YAN Jun-jie, LIU Jian-feng, GAO Yu-lin. Application and Risk of RNAi Technology in Potato Insect Pest Management [J]. Biotechnology Bulletin, 2024, 40(9): 4-10. |
| [2] | ZHOU Ran, WANG Xing-ping, LI Yan-xia, LUORENG Zhuo-ma. Analysis of LncRNA Differential Expression in Mammary Tissue of Cows with Staphylococcus aureus Mastitis [J]. Biotechnology Bulletin, 2024, 40(8): 320-328. |
| [3] | JIN Bo-yang, QIN Shi-yu, ZHANG Ming-da, LI Qian-qian, WEN Jing, SHEN Xiu-li, DU Zhi-qiang. Research on the Molecular Mechanism of Crayfish prx 6 in the Process of Defending against Staphylococcus aureus Infection [J]. Biotechnology Bulletin, 2024, 40(7): 314-322. |
| [4] | ZOU Yong-feng, BAO Zhi-ming, CAO Pan-hui, ZHANG Jia-yuan, GUO Jie-yu, SU Xian-bin, XU Yu, XU Zhi-qiang, GUO Hui. Physiological and Metabolic Mechanisms of Procambarus clarkii in Response to High Temperature Stress [J]. Biotechnology Bulletin, 2024, 40(11): 321-334. |
| [5] | CHEN Xiao-meng, ZHANG Xue-jing, ZHANG Huan, ZHANG Bao-jiang, SU Yan. Prokaryotic Expression of Recombinant Bovine Mastitis Staphylococcus aureus GapC Protein and Identification of Its B-cell Epitopes [J]. Biotechnology Bulletin, 2023, 39(5): 306-313. |
| [6] | ZHANG Long-xi, LYU Lin, ZHANG Huan-huan, ZHOU Jin-cheng, CHE Wu-nan, DONG Hui. Research Progress in the Application of RNAi Technology in Parasitoid Wasps [J]. Biotechnology Bulletin, 2023, 39(12): 99-108. |
| [7] | CHENG Shen-wei, ZHANG Ke-qiang, LIANG Jun-feng, LIU Fu-yuan, GAO Xing-liang, DU Lian-zhu. Establishment of a Triple Droplet Digital PCR Quantitative Detection Method for Typical Pathogenic Bacteria in Livestock and Poultry Manure [J]. Biotechnology Bulletin, 2022, 38(9): 271-280. |
| [8] | LIU Xiao-mei, WANG Dong-xin, ZHANG Chun, WEI Shuang-shi. Inhibition of AAV-mediated RNAi to SARS-CoV-2 S Gene Expression [J]. Biotechnology Bulletin, 2022, 38(3): 188-193. |
| [9] | GUO Yu-fei, YAN Rong-mei, ZHANG Xiao-ru, CAO Wei, LIU Hao. Metabolic Engineering Modification of Aspergillus niger for the Production of D-glucaric Acid [J]. Biotechnology Bulletin, 2022, 38(11): 227-237. |
| [10] | PAN Yin-lai, QIU Chun-hui, WANG Yi-lei, ZHANG Zi-ping. Development of RNA Drugs and Its Application in Aquaculture [J]. Biotechnology Bulletin, 2021, 37(2): 203-215. |
| [11] | DENG Pu-rong, LIU Yong-bo. Review on the Synergistic Insect-resistant Application of RNAi and Bt-transgenic Technologies [J]. Biotechnology Bulletin, 2021, 37(10): 216-224. |
| [12] | XU Xue-liang, WANG Fen-shan, LIU Zi-rong, FAN Lin-juan, JI Xiang-yun, JIANG Jie-xian, YAO Ying-juan. Research Progress of RNA Interference Technology in the Field of Entomology [J]. Biotechnology Bulletin, 2021, 37(1): 255-261. |
| [13] | SU Jie, GUO Rong-qi, GAO Yang, YU Xiu-min, LI Guo-jing, WANG Rui-gang. Response to NaCl and ABA in Arabidopsis thaliana of the Double Silent Gene VHA-c2&c4 [J]. Biotechnology Bulletin, 2020, 36(7): 48-54. |
| [14] | SONG Hua-li, SUN Xiao-ying, KONG Xiang-hui, LI Li, PEI Chao. Application of RNA Interference Technology in Antiviral and Antiparasitic Research of Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 193-205. |
| [15] | LU Lin, YANG Shang-yu, LIU Wei-dong, LU Li-ming. Mining of Genes Related to Reactive Oxygen Species Scavenging in Response to Salt Stress in Nicotiana alata Based on Transcriptome Sequencing [J]. Biotechnology Bulletin, 2020, 36(12): 42-53. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||