Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (12): 214-224.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0490
Previous Articles Next Articles
DU Yu-qing1(
), JIANG Lu-yuan1, WANG Yi-heng2, WU Chen-wei1, YANG Meng-lu1, LIU Xu-sheng3, WANG Xiao-jun4, QIU De-you1, FAN Wei5(
), YANG Yan-fang1(
)
Received:2025-05-13
Online:2025-12-26
Published:2026-01-06
Contact:
FAN Wei, YANG Yan-fang
E-mail:dyq991115@163.com;fanwei@caf.ac.cn;echoyyf@caf.ac.cn
DU Yu-qing, JIANG Lu-yuan, WANG Yi-heng, WU Chen-wei, YANG Meng-lu, LIU Xu-sheng, WANG Xiao-jun, QIU De-you, FAN Wei, YANG Yan-fang. Genetic Diversity of Taxus chinensis var. mairei in Taihang Mountains Based on SSR Molecular Markers[J]. Biotechnology Bulletin, 2025, 41(12): 214-224.
种群编号 Population code | 产地 Resource | 个体数 Number of individuals |
|---|---|---|
| 19 | 河南三门峡市卢氏县 Lushi County, Sanmenxia City, Henan Province | 10 |
| 20 | 河南南阳市南召县 Nanzhao County, Nanyang City, Henan Province | 10 |
| 52 | 河南洛阳市汝阳县 Ruyang County, Luoyang City, Henan Province | 10 |
| LS | 山西省晋城市沁水县 Qinshui County, Jincheng City, Shanxi Province | 10 |
| MH | 河南省济源市 Jiyuan City, Henan Province | 11 |
| SD | 山西省晋城市陵川县 Lingchuan County, Jincheng City, Shanxi Province | 10 |
| SM | 山西省晋城市陵川县 Lingchuan County, Jincheng City, Shanxi Province | 10 |
| TT | 山西省晋城市阳城县 Yangcheng County, Jincheng City, Shanxi Province | 11 |
| YTH | 山西省晋城市陵川县 Lingchuan County, Jincheng City, Shanxi Province | 10 |
| FJNF | 福建省南平市 Nanping City, Fujian Province | 5 |
| HNNF | 湖南省永州市 Yongzhou City, Hunan Province | 5 |
| ZJNF | 浙江省丽水市 Lishui City, Zhejiang Province | 5 |
Table 1 Sampling information of T. chinensis var. mairei populations
种群编号 Population code | 产地 Resource | 个体数 Number of individuals |
|---|---|---|
| 19 | 河南三门峡市卢氏县 Lushi County, Sanmenxia City, Henan Province | 10 |
| 20 | 河南南阳市南召县 Nanzhao County, Nanyang City, Henan Province | 10 |
| 52 | 河南洛阳市汝阳县 Ruyang County, Luoyang City, Henan Province | 10 |
| LS | 山西省晋城市沁水县 Qinshui County, Jincheng City, Shanxi Province | 10 |
| MH | 河南省济源市 Jiyuan City, Henan Province | 11 |
| SD | 山西省晋城市陵川县 Lingchuan County, Jincheng City, Shanxi Province | 10 |
| SM | 山西省晋城市陵川县 Lingchuan County, Jincheng City, Shanxi Province | 10 |
| TT | 山西省晋城市阳城县 Yangcheng County, Jincheng City, Shanxi Province | 11 |
| YTH | 山西省晋城市陵川县 Lingchuan County, Jincheng City, Shanxi Province | 10 |
| FJNF | 福建省南平市 Nanping City, Fujian Province | 5 |
| HNNF | 湖南省永州市 Yongzhou City, Hunan Province | 5 |
| ZJNF | 浙江省丽水市 Lishui City, Zhejiang Province | 5 |
引物名称 Primer name | 引物序列 Primer sequences (5′-3′) | 退火温度 Annealing temperature (℃) | 荧光标签 Fluorescent labels |
|---|---|---|---|
| HDS10 | F: | 55 | FAM |
| R: CCTCAGCAACAGACACAGGA | |||
| HDS52 | F: | 55 | VIC |
| R: GTAAACATCGCCTTCCTTGC | |||
| HDS54 | F: | 55 | VIC |
| R: TTCACCTGCCAATCTAAGGG | |||
| HDS76 | F: | 55 | NED |
| R: GCTTCAACATTGCAAAACGA | |||
| HDS82 | F: | 54 | NED |
| R: GTGGATTCGGTCACTTTGGT | |||
| HDS84 | F: | 55 | NED |
| R: AAGCATAAAAGGCGAGAGCA | |||
| HDS86 | F: | 55 | NED |
| R: CGTTTCAAGAAAAACGGGAA | |||
| HDS88 | F: | 53 | NED |
| R: TGCCCAATAAACTATCATCTCC |
Table 2 Information of polymorphic primers
引物名称 Primer name | 引物序列 Primer sequences (5′-3′) | 退火温度 Annealing temperature (℃) | 荧光标签 Fluorescent labels |
|---|---|---|---|
| HDS10 | F: | 55 | FAM |
| R: CCTCAGCAACAGACACAGGA | |||
| HDS52 | F: | 55 | VIC |
| R: GTAAACATCGCCTTCCTTGC | |||
| HDS54 | F: | 55 | VIC |
| R: TTCACCTGCCAATCTAAGGG | |||
| HDS76 | F: | 55 | NED |
| R: GCTTCAACATTGCAAAACGA | |||
| HDS82 | F: | 54 | NED |
| R: GTGGATTCGGTCACTTTGGT | |||
| HDS84 | F: | 55 | NED |
| R: AAGCATAAAAGGCGAGAGCA | |||
| HDS86 | F: | 55 | NED |
| R: CGTTTCAAGAAAAACGGGAA | |||
| HDS88 | F: | 53 | NED |
| R: TGCCCAATAAACTATCATCTCC |
引物名称 Primer name | 等位基因数 Na | 有效等位基因数 Ne | Shannon’s指数 I | 观测杂合度 Ho | 期望杂合度 He |
|---|---|---|---|---|---|
| HDS 10 | 2.417 | 1.786 | 0.612 | 0.449 | 0.377 |
| HDS 52 | 1.500 | 1.307 | 0.251 | 0.067 | 0.158 |
| HDS 54 | 1.917 | 1.474 | 0.423 | 0.302 | 0.261 |
| HDS 76 | 5.583 | 4.038 | 1.441 | 0.549 | 0.705 |
| HDS 82 | 4.083 | 2.632 | 1.070 | 0.701 | 0.576 |
| HDS 84 | 2.750 | 2.314 | 0.794 | 0.561 | 0.469 |
| HDS 86 | 1.500 | 1.092 | 0.136 | 0.070 | 0.071 |
| HDS 88 | 2.500 | 1.951 | 0.702 | 0.423 | 0.433 |
| Total | 22.250 | 16.594 | 5.429 | 3.122 | 3.050 |
| Average | 2.781 | 2.074 | 0.679 | 0.390 | 0.381 |
Table 3 Polymorphism information of 8 pairs of SSR primers
引物名称 Primer name | 等位基因数 Na | 有效等位基因数 Ne | Shannon’s指数 I | 观测杂合度 Ho | 期望杂合度 He |
|---|---|---|---|---|---|
| HDS 10 | 2.417 | 1.786 | 0.612 | 0.449 | 0.377 |
| HDS 52 | 1.500 | 1.307 | 0.251 | 0.067 | 0.158 |
| HDS 54 | 1.917 | 1.474 | 0.423 | 0.302 | 0.261 |
| HDS 76 | 5.583 | 4.038 | 1.441 | 0.549 | 0.705 |
| HDS 82 | 4.083 | 2.632 | 1.070 | 0.701 | 0.576 |
| HDS 84 | 2.750 | 2.314 | 0.794 | 0.561 | 0.469 |
| HDS 86 | 1.500 | 1.092 | 0.136 | 0.070 | 0.071 |
| HDS 88 | 2.500 | 1.951 | 0.702 | 0.423 | 0.433 |
| Total | 22.250 | 16.594 | 5.429 | 3.122 | 3.050 |
| Average | 2.781 | 2.074 | 0.679 | 0.390 | 0.381 |
种群编号 Population code | 等位基因数 Na | 有效等位基因数 Ne | Shannon’s指数 I | 观测杂合度 Ho | 期望杂合度 He |
|---|---|---|---|---|---|
| 19 | 2.250 | 1.897 | 0.542 | 0.306 | 0.310 |
| 20 | 2.125 | 1.681 | 0.496 | 0.388 | 0.301 |
| 52 | 2.250 | 1.795 | 0.543 | 0.452 | 0.316 |
| LS | 3.000 | 2.107 | 0.755 | 0.357 | 0.433 |
| MH | 2.875 | 2.088 | 0.747 | 0.356 | 0.421 |
| SD | 3.250 | 2.407 | 0.739 | 0.396 | 0.395 |
| SM | 3.500 | 2.108 | 0.744 | 0.363 | 0.389 |
| TT | 3.125 | 2.247 | 0.690 | 0.378 | 0.348 |
| YTH | 2.875 | 2.031 | 0.689 | 0.313 | 0.403 |
| Total 1 | 25.250 | 18.360 | 5.946 | 3.306 | 3.316 |
| Mean 1 | 2.806 | 2.040 | 0.661 | 0.367 | 0.368 |
| FJNF | 2.375 | 1.806 | 0.576 | 0.400 | 0.333 |
| HHNF | 2.500 | 2.256 | 0.720 | 0.475 | 0.428 |
| ZJNF | 3.250 | 2.470 | 0.902 | 0.500 | 0.500 |
| Total 2 | 33.375 | 24.893 | 8.143 | 4.684 | 4.577 |
| Mean 2 | 2.781 | 2.074 | 0.679 | 0.390 | 0.381 |
Table 4 Genetic diversity parameters of T. chinensis var. mairei
种群编号 Population code | 等位基因数 Na | 有效等位基因数 Ne | Shannon’s指数 I | 观测杂合度 Ho | 期望杂合度 He |
|---|---|---|---|---|---|
| 19 | 2.250 | 1.897 | 0.542 | 0.306 | 0.310 |
| 20 | 2.125 | 1.681 | 0.496 | 0.388 | 0.301 |
| 52 | 2.250 | 1.795 | 0.543 | 0.452 | 0.316 |
| LS | 3.000 | 2.107 | 0.755 | 0.357 | 0.433 |
| MH | 2.875 | 2.088 | 0.747 | 0.356 | 0.421 |
| SD | 3.250 | 2.407 | 0.739 | 0.396 | 0.395 |
| SM | 3.500 | 2.108 | 0.744 | 0.363 | 0.389 |
| TT | 3.125 | 2.247 | 0.690 | 0.378 | 0.348 |
| YTH | 2.875 | 2.031 | 0.689 | 0.313 | 0.403 |
| Total 1 | 25.250 | 18.360 | 5.946 | 3.306 | 3.316 |
| Mean 1 | 2.806 | 2.040 | 0.661 | 0.367 | 0.368 |
| FJNF | 2.375 | 1.806 | 0.576 | 0.400 | 0.333 |
| HHNF | 2.500 | 2.256 | 0.720 | 0.475 | 0.428 |
| ZJNF | 3.250 | 2.470 | 0.902 | 0.500 | 0.500 |
| Total 2 | 33.375 | 24.893 | 8.143 | 4.684 | 4.577 |
| Mean 2 | 2.781 | 2.074 | 0.679 | 0.390 | 0.381 |
种群编号 Population code | 19 | 20 | 52 | LS | MH | SD | SM | TT | YTH | ZJNF | FJNF | HNNF |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 19 | - | 0.89 | 12.25 | 2.02 | 1.31 | 1.54 | 1.31 | 1.22 | 0.89 | 0.51 | 0.38 | 0.31 |
| 20 | 0.22 | - | 1.07 | 2.25 | 3.32 | 3.92 | 3.92 | 2.88 | 0.79 | 0.61 | 0.27 | 0.32 |
| 52 | 0.02 | 0.19 | - | 2.25 | 1.54 | 1.83 | 1.67 | 1.42 | 1.00 | 0.56 | 0.36 | 0.33 |
| LS | 0.11 | 0.10 | 0.10 | - | 3.92 | 6.00 | 3.32 | 2.53 | 1.42 | 0.71 | 0.46 | 0.43 |
| MH | 0.16 | 0.07 | 0.14 | 0.06 | - | 8.08 | 4.75 | 2.88 | 1.07 | 0.68 | 0.46 | 0.41 |
| SD | 0.14 | 0.06 | 0.12 | 0.04 | 0.03 | - | 4.75 | 3.32 | 1.22 | 0.68 | 0.38 | 0.39 |
| SM | 0.16 | 0.06 | 0.13 | 0.07 | 0.05 | 0.05 | - | 3.32 | 1.07 | 0.71 | 0.38 | 0.39 |
| TT | 0.17 | 0.08 | 0.15 | 0.09 | 0.08 | 0.07 | 0.07 | - | 0.84 | 0.56 | 0.31 | 0.31 |
| YTH | 0.22 | 0.24 | 0.20 | 0.15 | 0.19 | 0.17 | 0.19 | 0.23 | - | 0.75 | 0.46 | 0.46 |
| ZJNF | 0.33 | 0.29 | 0.31 | 0.26 | 0.27 | 0.27 | 0.26 | 0.31 | 0.25 | - | 0.79 | 2.25 |
| FJNF | 0.40 | 0.48 | 0.41 | 0.35 | 0.35 | 0.40 | 0.40 | 0.45 | 0.35 | 0.24 | - | 0.75 |
| HNNF | 0.45 | 0.44 | 0.43 | 0.37 | 0.38 | 0.39 | 0.39 | 0.45 | 0.35 | 0.10 | 0.25 | - |
Table 5 Analysis of genetic differentiation coefficient Fst (below triangle of the table) and Nm (above triangle of the table)
种群编号 Population code | 19 | 20 | 52 | LS | MH | SD | SM | TT | YTH | ZJNF | FJNF | HNNF |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 19 | - | 0.89 | 12.25 | 2.02 | 1.31 | 1.54 | 1.31 | 1.22 | 0.89 | 0.51 | 0.38 | 0.31 |
| 20 | 0.22 | - | 1.07 | 2.25 | 3.32 | 3.92 | 3.92 | 2.88 | 0.79 | 0.61 | 0.27 | 0.32 |
| 52 | 0.02 | 0.19 | - | 2.25 | 1.54 | 1.83 | 1.67 | 1.42 | 1.00 | 0.56 | 0.36 | 0.33 |
| LS | 0.11 | 0.10 | 0.10 | - | 3.92 | 6.00 | 3.32 | 2.53 | 1.42 | 0.71 | 0.46 | 0.43 |
| MH | 0.16 | 0.07 | 0.14 | 0.06 | - | 8.08 | 4.75 | 2.88 | 1.07 | 0.68 | 0.46 | 0.41 |
| SD | 0.14 | 0.06 | 0.12 | 0.04 | 0.03 | - | 4.75 | 3.32 | 1.22 | 0.68 | 0.38 | 0.39 |
| SM | 0.16 | 0.06 | 0.13 | 0.07 | 0.05 | 0.05 | - | 3.32 | 1.07 | 0.71 | 0.38 | 0.39 |
| TT | 0.17 | 0.08 | 0.15 | 0.09 | 0.08 | 0.07 | 0.07 | - | 0.84 | 0.56 | 0.31 | 0.31 |
| YTH | 0.22 | 0.24 | 0.20 | 0.15 | 0.19 | 0.17 | 0.19 | 0.23 | - | 0.75 | 0.46 | 0.46 |
| ZJNF | 0.33 | 0.29 | 0.31 | 0.26 | 0.27 | 0.27 | 0.26 | 0.31 | 0.25 | - | 0.79 | 2.25 |
| FJNF | 0.40 | 0.48 | 0.41 | 0.35 | 0.35 | 0.40 | 0.40 | 0.45 | 0.35 | 0.24 | - | 0.75 |
| HNNF | 0.45 | 0.44 | 0.43 | 0.37 | 0.38 | 0.39 | 0.39 | 0.45 | 0.35 | 0.10 | 0.25 | - |
变异来源 Source of variance | 自由度 df | 平方和 SS | 平均方差 MS | 估算差异值 Est. var. | 变异百分比 Variation percentage (%) | P | |
|---|---|---|---|---|---|---|---|
| 所有红豆杉种群 | 种群间 Among populations | 11 | 141.831 | 12.894 | 0.605 | 24 | <0.001 |
| 个体间 Among indiv. | 94 | 213.282 | 2.269 | 0.399 | 16 | <0.001 | |
| 个体内 Within indiv. | 106 | 156.000 | 1.472 | 1.472 | 60 | <0.001 | |
| 总计 Total | 211 | 511.113 | - | 2.475 | 100 | - | |
| 太行山区红豆杉种群 | 种群间 Among populations | 8 | 69.400 | 8.675 | 0.315 | 15 | <0.001 |
| 个体间 Among indiv. | 82 | 188.782 | 2.302 | 0.445 | 20 | <0.001 | |
| 个体内 Within indiv. | 91 | 128.500 | 1.412 | 1.412 | 65 | <0.001 | |
| 总计 Total | 181 | 386.681 | - | 2.172 | 100 | - | |
Table 6 Analysis of molecular variance (AMOVA) of T. chinensis var. mairei populations based on SSR markers
变异来源 Source of variance | 自由度 df | 平方和 SS | 平均方差 MS | 估算差异值 Est. var. | 变异百分比 Variation percentage (%) | P | |
|---|---|---|---|---|---|---|---|
| 所有红豆杉种群 | 种群间 Among populations | 11 | 141.831 | 12.894 | 0.605 | 24 | <0.001 |
| 个体间 Among indiv. | 94 | 213.282 | 2.269 | 0.399 | 16 | <0.001 | |
| 个体内 Within indiv. | 106 | 156.000 | 1.472 | 1.472 | 60 | <0.001 | |
| 总计 Total | 211 | 511.113 | - | 2.475 | 100 | - | |
| 太行山区红豆杉种群 | 种群间 Among populations | 8 | 69.400 | 8.675 | 0.315 | 15 | <0.001 |
| 个体间 Among indiv. | 82 | 188.782 | 2.302 | 0.445 | 20 | <0.001 | |
| 个体内 Within indiv. | 91 | 128.500 | 1.412 | 1.412 | 65 | <0.001 | |
| 总计 Total | 181 | 386.681 | - | 2.172 | 100 | - | |
种群编号 Population code | 19 | 20 | 52 | LS | MH | SD | SM | TT | YTH | ZJNF | FJNF | HNNF |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 19 | 0.000 | |||||||||||
| 20 | 0.260 | 0.000 | ||||||||||
| 52 | 0.015 | 0.219 | 0.000 | |||||||||
| LS | 0.151 | 0.147 | 0.141 | 0.000 | ||||||||
| MH | 0.224 | 0.104 | 0.199 | 0.089 | 0.000 | |||||||
| SD | 0.178 | 0.082 | 0.147 | 0.060 | 0.047 | 0.000 | ||||||
| SM | 0.201 | 0.074 | 0.175 | 0.108 | 0.079 | 0.056 | 0.000 | |||||
| TT | 0.229 | 0.094 | 0.205 | 0.146 | 0.116 | 0.096 | 0.100 | 0.000 | ||||
| YTH | 0.371 | 0.449 | 0.353 | 0.343 | 0.418 | 0.325 | 0.370 | 0.464 | 0.000 | |||
| ZJNF | 1.016 | 0.810 | 0.906 | 0.908 | 0.944 | 0.841 | 0.839 | 1.072 | 0.770 | 0.000 | ||
| FJNF | 0.969 | 1.334 | 1.021 | 0.990 | 1.197 | 1.136 | 1.323 | 1.307 | 1.089 | 0.607 | 0.000 | |
| HNNF | 1.610 | 1.536 | 1.517 | 1.571 | 1.550 | 1.467 | 1.491 | 2.097 | 1.192 | 0.242 | 0.572 | 0.000 |
Table 7 Genetic distance among populations of T. chinensis var. mairei
种群编号 Population code | 19 | 20 | 52 | LS | MH | SD | SM | TT | YTH | ZJNF | FJNF | HNNF |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 19 | 0.000 | |||||||||||
| 20 | 0.260 | 0.000 | ||||||||||
| 52 | 0.015 | 0.219 | 0.000 | |||||||||
| LS | 0.151 | 0.147 | 0.141 | 0.000 | ||||||||
| MH | 0.224 | 0.104 | 0.199 | 0.089 | 0.000 | |||||||
| SD | 0.178 | 0.082 | 0.147 | 0.060 | 0.047 | 0.000 | ||||||
| SM | 0.201 | 0.074 | 0.175 | 0.108 | 0.079 | 0.056 | 0.000 | |||||
| TT | 0.229 | 0.094 | 0.205 | 0.146 | 0.116 | 0.096 | 0.100 | 0.000 | ||||
| YTH | 0.371 | 0.449 | 0.353 | 0.343 | 0.418 | 0.325 | 0.370 | 0.464 | 0.000 | |||
| ZJNF | 1.016 | 0.810 | 0.906 | 0.908 | 0.944 | 0.841 | 0.839 | 1.072 | 0.770 | 0.000 | ||
| FJNF | 0.969 | 1.334 | 1.021 | 0.990 | 1.197 | 1.136 | 1.323 | 1.307 | 1.089 | 0.607 | 0.000 | |
| HNNF | 1.610 | 1.536 | 1.517 | 1.571 | 1.550 | 1.467 | 1.491 | 2.097 | 1.192 | 0.242 | 0.572 | 0.000 |
Fig. 2 The delta K curve graph for different groupsThe horizontal coordinate K indicates the number of clusters, while the vertical coordinate delta K indicates the determination of group division by the Structure software. A higher delta K value suggests a more meaningful grouping
| [1] | 李朝阳, 陈玲, 刘世彪, 等. 古丈县南方红豆杉天然群体的遗传多样性研究 [J]. 中国野生植物资源, 2007, 26(6): 58-60. |
| Li ZY, Chen L, Liu SB, et al. Study on the genetic diversity of natural population of Taxus chinensis in Guzhang in Hunan province [J]. Chin Wild Plant Resour, 2007, 26(6): 58-60. | |
| [2] | 茹文明, 秦永燕, 张桂萍, 等. 濒危植物南方红豆杉遗传多样性的RAPD分析 [J]. 植物研究, 2008, 28(6): 698-704. |
| Ru WM, Qin YY, Zhang GP, et al. Genetic diversity of rare and endangered plant Taxus chinensis var. mairei [J]. Bull Bot Res, 2008, 28(6): 698-704. | |
| [3] | 张蕊, 周志春, 金国庆, 等. 南方红豆杉种源遗传多样性和遗传分化 [J]. 林业科学, 2009, 45(1): 50-56. |
| Zhang R, Zhou ZC, Jin GQ, et al. Genetic diversity and genetic differentiation of Taxus wallichiana var. mairei provenances [J]. Sci Silvae Sin, 2009, 45(1): 50-56. | |
| [4] | 李乃伟, 束晓春, 何树兰, 等. 南方红豆杉的ISSR遗传多样性分析 [J]. 西北植物学报, 2010, 30(12): 2536-2541. |
| Li NW, Shu XC, He SL, et al. ISSR analysis of genetic diversity of Taxus chinensis var. mairei [J]. Acta Bot Boreali Occidentalia Sin, 2010, 30(12): 2536-2541. | |
| [5] | 谢宛余. 元宝山地区红豆杉分类地位及其遗传变异分析 [D]. 长沙: 中南林业科技大学, 2021. |
| Xie WY. Taxonomic status and intraspecified genetic variation of Taxus in Yuanbaoshan region [D]. Changsha: Central South University of Forestry & Technology, 2021. | |
| [6] | 丁桂生. 南方红豆杉种源遗传多样性和遗传分化 [J]. 中国林副特产, 2011(3): 7-11. |
| Ding GS. Provenance genetic diversity and genetic differentiation of Taxus wallichiana var. mairei [J]. For Prod Speciality China, 2011(3): 7-11. | |
| [7] | 徐雯, 瞿印权, 张玲玲, 等. 基于RAPD的福建产南方红豆杉遗传多样性研究 [J]. 中草药, 2017, 48(14): 2943-2949. |
| Xu W, Qu YQ, Zhang LL, et al. Genetic diversity of Taxus chinensis var. mairei from Fujian based on RAPD markers [J]. Chin Tradit Herb Drugs, 2017, 48(14): 2943-2949. | |
| [8] | 罗芊芊, 李峰卿, 肖德卿, 等. 两个南方红豆杉天然居群的交配系统分析 [J]. 南京林业大学学报: 自然科学版, 2023, 47(5): 80-86. |
| Luo QQ, Li FQ, Xiao DQ, et al. Mating system analyses of two natural populations of Taxus wallichiana var. mairei [J]. J Nanjing For Univ Nat Sci Ed, 2023, 47(5): 80-86. | |
| [9] | Cheng J, Wang X, Liu XN, et al. Chromosome-level genome of Himalayan yew provides insights into the origin and evolution of the paclitaxel biosynthetic pathway [J]. Mol Plant, 2021, 14(7): 1199-1209. |
| [10] | Xiong XY, Gou JB, Liao QG, et al. The Taxus genome provides insights into paclitaxel biosynthesis [J]. Nat Plants, 2021, 7(8): 1026-1036. |
| [11] | Song C, Fu FF, Yang LL, et al. Taxus yunnanensis genome offers insights into gymnosperm phylogeny and taxol production [J]. Commun Biol, 2021, 4(1): 1203. |
| [12] | 李炎林, 杨星星, 张家银, 等. 南方红豆杉转录组SSR挖掘及分子标记的研究 [J]. 园艺学报, 2014, 41(4): 735-745. |
| Li YL, Yang XX, Zhang JY, et al. Studies on SSR molecular markers based on transcriptome of Taxus chinensis var. mairei [J]. Acta Hortic Sin, 2014, 41(4): 735-745. | |
| [13] | 申响保, 朱妍洁, 徐刚标. 密叶红豆杉SSR位点分布特征及分子标记开发 [J]. 中南林业科技大学学报, 2021, 41(4): 139-147. |
| Shen XB, Zhu YJ, Xu GB. Distribution characteristics of SSR loci and development of molecular markers in Taxus fuana [J]. J Cent South Univ For Technol, 2021, 41(4): 139-147. | |
| [14] | 蒋路园, 吴文丽, 张恺恺, 等. 南方红豆杉转录组SSR位点分析及其分子标记开发 [J]. 中草药, 2024, 55(3): 928-936. |
| Jiang LY, Wu WL, Zhang KK, et al. Transcriptome sequencing and development of SSR molecular markers of Taxus chinensis var. mairei [J]. Chin Tradit Herb Drugs, 2024, 55(3): 928-936. | |
| [15] | 李孝伟, 孟丽, 许桂芳. 河南太行山南方红豆杉濒危原因分析 [J]. 现代农业科技, 2007(13): 235-237. |
| Li XW, Meng L, Xu GF. Analysis of endangered causes of Taxus mairei in Taihang Mountain, Henan province [J]. Anhui Agric, 2007(13): 235-237. | |
| [16] | 李乃伟, 贺善安, 束晓春, 等. 基于ISSR标记的南方红豆杉野生种群和迁地保护种群的遗传多样性和遗传结构分析 [J]. 植物资源与环境学报, 2011, 20(1): 25-30. |
| Li NW, He SA, Shu XC, et al. Genetic diversity and structure analyses of wild and ex-situ conservation populations of Taxus chinensis var. mairei based on ISSR marker [J]. J Plant Resour Environ, 2011, 20(1): 25-30. | |
| [17] | 吴顺, 刘坤, 罗冬艳, 等. 海拔对贵州雷公山地区南方红豆杉种群遗传多样性的影响 [J]. 中药材, 2018, 41(2): 303-307. |
| Wu S, Liu K, Luo DY, et al. Effects of altitude on genetic diversity for Taxus chinensis var. mairei at Leigongshan area in Guizhou [J]. J Chin Med Mater, 2018, 41(2): 303-307. | |
| [18] | 廉敏. 山西南方红豆杉群落谱系结构及其数量分类与排序研究 [D]. 临汾: 山西师范大学, 2020. |
| Lian M. The phylogenetic structure and quantitative analysis and ordination of Taxus chinensis var.mairei community, in Shanxi province [D]. Linfen: Shanxi Normal University, 2020. | |
| [19] | 吴长桥, 蒋路园, 杨艳芳, 等. 红豆杉属植物中紫杉烷化合物含量比较与分析 [J]. 中草药, 2021, 52(2): 538-543. |
| Wu CQ, Jiang LY, Yang YF, et al. Comparative, regression and cluster analysis on contents of six taxanes in Taxus spp [J]. Chin Tradit Herb Drugs, 2021, 52(2): 538-543. | |
| [20] | Su JY, Yan Y, Song J, et al. Recent fragmentation may not alter genetic patterns in endangered long-lived species: evidence from Taxus cuspidata [J]. Front Plant Sci, 2018, 9: 1571. |
| [21] | Poudel RC, Möller M, Liu J, et al. Low genetic diversity and high inbreeding of the endangered yews in Central Himalaya: implications for conservation of their highly fragmented populations [J]. Divers Distrib, 2014, 20(11): 1270-1284. |
| [22] | 郑超, 别庆铃, 夏冰, 等. 4种红豆杉属植物遗传多样性和遗传关系的RAPD分析 [J]. 植物资源与环境学报, 2013, 22(3): 58-62. |
| Zheng C, Bie QL, Xia B, et al. RAPD analysis of genetic diversity and genetic relationship of four species in Taxus Linn [J]. J Plant Resour Environ, 2013, 22(3): 58-62. | |
| [23] | 吴杰, 汤欢, 黄林芳, 等. 红豆杉属植物全球生态适宜性分析研究 [J]. 药学学报, 2017, 52(7): 1186-1195. |
| Wu J, Tang H, Huang LF, et al. Research and analysis of globally ecological suitability for Taxus plants [J]. Acta Pharm Sin, 2017, 52(7): 1186-1195. | |
| [24] | 程蓓蓓. 中国红豆杉属分子谱系地理学与遗传多样性研究 [D]. 北京: 中国林业科学研究院, 2016. |
| Cheng BB. Molecular phylogeographic and genetic diversity of Taxus L. (taxaeae) in China [D]. Beijing: Chinese Academy of Forestry, 2016. | |
| [25] | Zhang DQ, Zhou N. Genetic diversity and population structure of the endangered conifer Taxus wallichiana var. mairei (Taxaceae) revealed by Simple Sequence Repeat (SSR) markers [J]. Biochem Syst Ecol, 2013, 49: 107-114. |
| [26] | 张宏意, 陈月琴, 廖文波. 南方红豆杉不同居群遗传多样性的RAPD研究 [J]. 西北植物学报, 2003, 23(11): 1993-1996. |
| Zhang HY, Chen YQ, Liao WB. RAPD analysis of population genetic diversity of Taxus mairei [J]. Acta Bot Boreali Occidentalia Sin, 2003, 23(11): 1993-1996. | |
| [27] | 张玲玲. 南方红豆杉DNA指纹图谱技术研究 [D]. 福州: 福建农林大学, 2009. |
| Zhang LL. Studies on the DNA fingerprinting of Taxus Chinensis var. mairei [D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. | |
| [28] | 武庭维. 中国漆树与越南红豆杉遗传多样性的研究 [D]. 杨凌: 西北农林科技大学, 2018. |
| Wu TW. Assessing the genetic diversity of economically tree species in China and Vietnam (Chinese lacquer and Vietnam conifer) [D]. Yangling: Northwest A & F University, 2018. | |
| [29] | 张原, 李鑫玉, 文亚峰, 等. 南岭山地南方红豆杉天然林与人工干扰群体的遗传变异分析 [J]. 中南林业科技大学学报, 2020, 40(6): 105-110, 131. |
| Zhang Y, Li XY, Wen YF, et al. Genetic variation analysis of natural and interference populations of Maire Yew in Nanling mountains [J]. J Cent South Univ For Technol, 2020, 40(6): 105-110, 131. | |
| [30] | Slatkin M. Gene flow and the geographic structure of natural populations [J]. Science, 1987, 236(4803): 787-792. |
| [31] | 李艳红, 张立娟, 朱文博, 等. 全球变化背景下南方红豆杉地域分布变化 [J]. 自然资源学报, 2021, 36(3): 783-792. |
| Li YH, Zhang LJ, Zhu WB, et al. Changes of Taxus chinensis var. mairei habitat distribution under global climate change [J]. J Nat Resour, 2021, 36(3): 783-792. |
| [1] | LU Yao, YUAN Ping-ping, JIN Xin, MAO Xiang-hong, FAN Xiang-bin, BAI Xiao-dong. Genetic Diversity Analysis and Fingerprinting of Wild Potato and Landraces Based on SSR Markers [J]. Biotechnology Bulletin, 2025, 41(9): 94-104. |
| [2] | PEI Hong-xia, WANG Lu-yao, LI Sheng-mei, GAO Jing-xia. Genetic Diversity of 220 Pepper Germplasm Resources Using SCoT, SRAP, and SSR Molecular Markers [J]. Biotechnology Bulletin, 2025, 41(8): 165-174. |
| [3] | DUAN Min-jie, LI Yi-fei, WANG Chun-ping, HUANG Ren-zhong, HUANG Qi-zhong, ZHANG Shi-cai. Association Analysis and Fingerprint Map Construction of Fruit Color Traits in Pepper via SSR Markers [J]. Biotechnology Bulletin, 2025, 41(7): 81-94. |
| [4] | DUAN Yong-hong, YANG Xin, YU Guan-qun, XIA Jun-jun, SONG Lu-shuai, BAI Xiao-dong, PENG Suo-tang. Genetic Diversity and Principal Component Analysis of 125 Potato Germplasm Resources [J]. Biotechnology Bulletin, 2025, 41(6): 130-143. |
| [5] | CHENG Shi-yuan, HE Jia-li, HAN Fu-bin, YANG Na-na, YANG Li-ping, FU Yong-yao. Morphological Characterization, Karyotype and ISSR Marker of Lilium longiflorum and L. longiflorum ‘Snow Queen’ [J]. Biotechnology Bulletin, 2025, 41(3): 219-229. |
| [6] | YUE Yuan-yuan, HU Zhe-yuan, HE Qi, HUANG Chen-yang, ZHENG Su-yue, ZHAO Meng-ran. Analysis of Genetic Diversity for Wild Germplasm of Pleurotus pulmonarius in China Based on Whole-genome SNP Loci and Trait Characteristics [J]. Biotechnology Bulletin, 2025, 41(3): 282-293. |
| [7] | YU Jing, YU Gui-shuang, SUN Hao-jie, JIANG Chun-jiao, YUAN Guang-di, YANG Zhen, WANG Zhi-wei, WANG Chao, WANG Chuan-tang. Affecting Factors and Relevant Marker Study on Peanut Seed Quality [J]. Biotechnology Bulletin, 2025, 41(2): 284-294. |
| [8] | HE Han, LIU Chuan-he, YU Meng-fan, YUAN Meng-ping, WEI Yue-rong, YANG Min, KUANG Rui-bin, ZHOU Chen-ping, WU Xia-ming, XU Ze. Development of Insertion-deletion Markers in Ananas comosus of Genome Based on Re-sequencing Data [J]. Biotechnology Bulletin, 2025, 41(2): 65-76. |
| [9] | SONG Ying-pei, WANG Can, ZHOU Hui-wen, KONG Ke-ke, XU Meng-ge, WANG Rui-kai. Analysis of Soybean Pod Dehiscence Habit Based on Whole Genome Association Analysis and Genetic Diversity [J]. Biotechnology Bulletin, 2025, 41(2): 97-106. |
| [10] | MAO Xiang-hong, LU Yao, FAN Xiang-bin, DU Pei-bing, BAI Xiao-dong. Genetic Diversity Analysis of Potato Varieties Based on SSR Fluorescent Marker Capillary Electrophoresis and Construction of Molecular Identity Card [J]. Biotechnology Bulletin, 2024, 40(9): 131-140. |
| [11] | LI Si-qi, ZHANG Wen-chen, YANG Liu, FU Qing-xin, HONG Xin, ZHANG Hai-wang. Genetic Diversity Analysis and DNA Fingerprint Construction Based on SSR Markers for Xanthoceras sorbifolia [J]. Biotechnology Bulletin, 2024, 40(5): 74-83. |
| [12] | CHEN Kai-ling, WU Tao, XU Yi-qun, GAO Jia, ZHANG Mei-jun, LI Xin, JIA Ju-qing. Identification of SSR Loci and Development of Polymorphic Markers in Whole Genome of Oat [J]. Biotechnology Bulletin, 2024, 40(2): 120-129. |
| [13] | LI Qing, SHI Yu-he, ZHU Jue, LI Xiao-ling, HOU Chao-wen, TONG Qiao-zhen. Genetic Diversity Analysis and DNA Fingerprint Construction of Atractylodes macrocephala Germplasm Resources Based on SCoT Molecular Markers [J]. Biotechnology Bulletin, 2024, 40(11): 142-151. |
| [14] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
| [15] | AN Miao, WANG Tong-tong, FU Yi-ting, XIA Jun-jun, PENG Suo-tang, DUAN Yong-hong. Genetic Diversity Analysis and Molecular Identity Card Construction by SSR Markers of 52 Solanum tuberosum L. Varieties(Lines) [J]. Biotechnology Bulletin, 2023, 39(12): 136-147. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||