Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (1): 41-48.
• Reviews and Monographs • Previous Articles Next Articles
Sun Hongjuan1,2,Zhou Zunchun2,Cui Jun1 ,Wang Xiuli1
Received:
2012-07-16
Revised:
2013-01-31
Online:
2013-01-30
Published:
2013-01-30
Sun Hongjuan, Zhou Zunchun, Cui Jun, Wang Xiuli. Insights into Toll-like Receptor from Marine Animals[J]. Biotechnology Bulletin, 2013, 0(1): 41-48.
[1] Kawai T, Akira S. The role of pattern-recognition receptors in innateimmunity :update on Toll-like receptors[J]. Nat Immunol, 2010,11(5):373-384. [2] Huang SF, Yuan SC, Guo L, et al. Genomic analysis of the immunegene repertoire of amphioxus reveals extraordinary innate complexityand diversity[J]. Genome Res, 2008, 18(7):1112-1126. [3] Hibino T, Loza-Coll M, Messier C, et al. The immune gene repertoireencoded in the purple sea urchin genome[J]. Dev Bio, 2006, 300(1):349-365. [4] O’Neill LAJ, Bowie AG. The family of five :TIR-domain-containingadaptors in Toll-like receptor signaling[J]. Nat Rev Immunol,2007, 7(5):353-364. [5] Lin Q, Li MC, Fang D, et al. The essential roles of Toll-like receptorsignaling pathways in sterile inflammatory diseases[J]. IntImmunopharmacol, 2011, 11(10):1422-1432. [6] Keogh B, Parker AE. Toll-like receptors as targets for immunedisorders[J]. Trends Pharmacol Sci, 2011, 32(7):435-442. [7] Nusslein-Volhard C, Lohs-Schardin M, Sander K, et al. A dorsoventralshift of embryonic primordia in a new maternal-effect mutantof Drosophila[J]. Nature, 1980, 283(5746):474-476. [8] Medzhitov R, Janeway Jr CA.Innate immunity:impact on the adaptiveimmune response[J]. Curr Opin Immunol, 1997, 9(1):4-9. [9] Coscia MR, Giacomelli S, Oreste U. Toll-like receptors :an overviewfrom invertebrates to vertebrates[J]. ISJ, 2011, 8 :210-226. [10] Wilson HV. On some phenomena of coalescence and regenerationin sponges[J]. J Exp Zool, 1907, 5(2):245-258. [11] Wiens M, Korzhev M, Perovic-Ottstadt S, et al. Toll-like receptorsare part of the innate immune defense system of sponges(demospongiae:Porifera)[J]. Mol Biol Evol, 2007, 24(3):792-804. [12] Srivastava M, Simakov O, Chapman J, et al. The Amphimedonqueenslandica genome and the evolution of animal complexity[J].Nature, 2010, 466(7307):720-726. [13] Gauthier ME, Du PL, Degnan BM. The genome of the sponge2013年第1期47 孙红娟等:海洋动物Toll 样受体的研究进展Amphimedon queenslandica provides new perspectives into theorigin of Toll-like and interleukin 1 receptor pathways[J]. EvolDev, 2010, 12(5):519-533. [14] Miller DJ, Hemmrich G, Ball EE, et al. The innate immunerepertoire in Cnidaria - ancestral complexity and stochastic geneloss[J]. Genome Biol, 2007, 8(4):R59. [15] Bosch TCG, Augustin R, Anton-Erxleben F, et al. Uncoveringevolutionary history of innate immunity :the simple metazoanHydra uses epithelial cells for host defence[J]. Dev CompImmunol, 2009, 33(4):559-569. [16] Shinzato C, Shoguchi E, Kawashima T, et al. Using the Acroporadigitifera genome to understand coral responses to environmentalchange[J]. Nature, 2011, 476(7360):320-323. [17] De Lorgeril J, Zenagui R, Rosa RD, et al. Whole transcriptomeprofiling of successful immune response to vibrio infections in theoyster Crassostrea gigas by digital gene expression analysis[J].PLoS ONE, 2011, 6(8):e23142. doi :10.1371/journal.pone.0023142. [18] Hou R, Bao ZM, Wang S, et al. Transcriptome sequencing and denovo analysis for Yesso scallop(Patinopecten yessoensis)using454 GS FLX[J]. PLoS One, 2011, 6(6):e21560. doi :10.1371/journal.pone.0021560. [19] Venier P, Varotto L, Rosani U, et al. Insights into the innate immunityof the Mediterranean mussel Mytilus galloprovincialis[J].BMC Genomics, 2011, 12 :69. [20] Philipp EER, Kraemer L, Melzner F, et al. Massively parallel RNAsequencing identifies a complex immune gene repertoire in thelophotrochozoan Mytilus edulis[J]. PLoS One, 2012, 7(3):e33091. doi :10.1371/journal.pone.0033091. [21] Wang M, Yanga J, Zhoua Z, et al. A primitive Toll-like receptor signalingpathway in mollusk Zhikong scallop Chlamys farreri[J].Dev Comp Immunol, 2011a, 35(4):511-520. [22] Zhang LL, Li L, Zhang GF. A Crassostrea gigas Toll-like receptorand comparative analysis of TLR pathway in invertebrates[J].Fish Shellfish Immunol, 2011, 30(2):653-660. [23] Inamori K, Ariki S, Kawabata S. A Toll-like receptor in horseshoecrabs[J]. Immunol Rev, 2004, 198 :106-115. [24] Belinda LW, Wei WX, Hanh BT, et al. SARM :a novel Toll-likereceptor is functionally conserved from arthropod to human[J].Mol Immunol, 2008, 45(6):1732-1742. [25] Wang PH, Liang JP, Gu ZH, et al. Molecular cloning, characterizationand expression analysis of two novel Tolls(LvToll2 and Lv-Toll3)and three putative Sp?tzle-like Toll ligands(LvSpz1-3)fromLitopenaeus vannamei[J]. Dev Comp Immunol, 2012, 36(2):359-371. [26] Arts JA, Cornelissen FH, Cijsouw T, et al. Molecular cloning andexpression of a Toll receptor in the giant tiger shrimp, Penaeusmonodon[J]. Fish Shellfish Immunol, 2007, 23(3):504-513. [27] Yang CJ, Zhang JQ, Li FH, et al. A Toll receptor from Chinese shrimpFenneropenaeus chinensis is responsive to Vibrio anguillaruminfection[J]. Fish Shellfish Immunol, 2008, 24(5):564-574. [28] Mekata T, Kono T, Yoshida T, et al. Identification of cDNA encodingToll receptor, MjToll gene from kuruma shrimp, Marsupenaeusjaponicus[J]. Fish Shellfish Immunol, 2008, 24(1):122-133. [29] Assavalapsakul W, Panyim S. Molecular cloning and tissuedistribution of the Toll receptor in the black tiger shrimp, Penaeusmonodon[J]. Genet Mol Res, 2012, 11(1):484-493. [30] Rast JP, Smith LC, Loza-Coll M, et al. Genomic insights into theimmune system of the sea urchin[J]. Science, 2006, 314(5801):952-956. [31] 杨爱馥, 周遵春, 孙大鹏, 等. 仿剌参铁蛋白ferritin 基因的序列分析及表达[J]. 水产学报, 2010, 6(34):710-717. [32] Yang AF, Zhou ZC, He CB, et al. Analysis of expressed sequencetags from body wall, intestine and respiratory tree of sea cucumber(Apostichopus japonicus)[J]. Aquaculture, 2009, 296 :193-199. [33] Yang AF, Zhou ZC, Dong Y, et al. Expression of immune-relatedgenes in embryos and larvae of sea cucumber Apostichopusjaponicus[J]. Fish Shellfish Immunol, 2010, 29 :839-845. [34] Zhou ZC, Sun DP, Yang AF, et al. Molecular characterizationand expression analysis of a complement component 3 in the seacucumber(Apostichopus japonicus)[J]. Fish Shellfish Immunol,2011 ; 31 :540-547. [35] Sun LN, Chen MY, Yang HS, et al. Large scale gene expressionprofiling during intestine and body wall regeneration in the seacucumber Apostichopus japonicus[J]. Comp Biochem Physiol,2011, 6(2):195-205. [36] Du HX, Bao ZM, Hou R, et al. Transcriptome sequencing andcharacterization for the sea cucumber Apostichopus japonicus(Selenka,1867)[J]. PLoS One, 2012, 7(3):e33311. doi :生物技术通报 Biotechnology Bulletin 2013年第1期4810.1371/journal.pone.0033311. [37] Delsuc F, Brinkmann H, Chourrout D, et al. Tunicates and notcephalochordates are the closest living relatives of vertebrates[J].Nature, 2006, 439(7079):965-968. [38] Yuan SC, Huang SF, Zhang W, et al. An amphioxus TLR withdynamic embryonic expression pattern responses to pathogens andactivates NF-κB pathway via MyD88[J]. Mol Immunol, 2009, 46(11-12):2348-2356. [39] Yuan SC, Wu K, Yang MY, et al. Amphioxus SARM involvedin neural development may function as a suppressor of TLRsignaling[J]. J Immunol, 2010, 184(12):6874-6881. [40] Azumi K, Santis R, Tomaso A, et al. Genomic analysis of immunityin a Urochordate and the emergence of the vertebrate immunesystem:"waiting for Godot"[J]. Immunogenetics, 2003, 55(8):570-581. [41] Sasaki N, Ogasawara M, Sekiguchi T, et al. Toll-like receptors of theascidian Ciona intestinalis. prototypes with hybrid functionalities ofvertebrate toll-like receptors[J]. Biol Chem, 2009, 284(40):27336-27343. [42] Ishii A, Matsuo A, Sawa H, et al. Lamprey TLRs with propertiesdistinct from those of the variable lymphocyte receptors[J]. JImmunol, 2007, 178(1):397-406. [43] Kasamatsu J, Oshiumi H, Matsumoto M, et al. Phylogenetic andexpression analysis of lamprey toll-like receptors[J]. Dev CompImmunol, 2010, 34(8):855-865. [44] Cateni C, Paulesu L, Bigliardi E, Hamlett WC. The interleukinI(IL-1)system in the uteroplacental complex of a cartilaginousfish, the smoothhound shark, Mustelus canis[J]. Reprod BiolEndncrinol, 2003, 1 :25. [45] Wu BJ, Xin B, Jin M, et al. Comparative and phylogeneticanalyses of three TIR domain-containing adaptors in metazoans :implications for evolution of TLR signaling pathways[J]. DevComp Immunol, 2011, 35(7):764-773. [46] Jault C, Pichon L, Chluba J. Toll-like receptor gene family and TIRdomainadapters in Danio rerio[J]. Mol Immunol, 2004, 40(11):759-771. [47] Oshiumi H, Tsujita T, Shida K, et al. Prediction of the prototype ofthe human Toll-like receptor gene family from the pufferfish, Fugurubripes, genome[J]. Immunogenetics, 2003, 54(11):791-800. [48] Yniv P. Toll-like receptors in bony fish :From genomics tofunction[J]. Dev Comp Immunol, 2011, 35(12):1263-1272. [49] Wu BJ, Huan TX, Gong J, et al. Domain combination of thevertebrate-like TLR gene family :implications for their origin andevolution[J]. J Genet, 2011, 90(3):401-408. [50] Pancer Z, Cooper MD. The evolution of adaptive immunity[J].Annu Rev Immunol, 2006, 24 :497-518. |
[1] | DING Li, DU Ting-ting, TANG Qiong-ying, GAO Quan-xin, YI Shao-kui, YANG Guo-liang. Analyses of Endocrine Regulation and Expression of Genes Related to the Molting Signaling Pathway in the Molting Cycle of Macrobrachium rosenbergii [J]. Biotechnology Bulletin, 2023, 39(9): 300-310. |
[2] | YU Shi-zhou, CAO Ling-gai, WANG Shi-ze, LIU Yong, BIAN Wen-jie, REN Xue-liang. Development Core SNP Markers for Tobacco Germplasm Genotyping [J]. Biotechnology Bulletin, 2023, 39(3): 89-100. |
[3] | HAN Zhi-ling, CHEN Qing, LIANG Xiao, WU Chun-ling, LIU Ying, WU Mu-feng, XU Xue-lian. Influence on Expression of Jasmonic Acid Signaling Pathway Gene in Tetranychus urticae Fed on Mite-resistant and Mite-susceptible Cassava Cultivars [J]. Biotechnology Bulletin, 2022, 38(6): 211-220. |
[4] | LI Zhi-wen, LIU Pei-yan, CHEN Jian-song, LIAO Jin-ling, LIN Bo-rong, ZHUO Kan. Identification of Rice Genes Responding to Both the Nematode Effector MgMO237 and Its Interacting Protein OsCRRSP55 [J]. Biotechnology Bulletin, 2021, 37(7): 88-97. |
[5] | ZHANG Ting-huan, ZHANG Li-juan, CHEN Si-qing, GUO Zong-yi. Effects of the Polymorphism of the Seed Sequence in Porcine miR-378 on Its Function and Carcass Traits [J]. Biotechnology Bulletin, 2021, 37(6): 154-162. |
[6] | ZOU Chen-chen, RUAN Ling-wei, SHI Hong. Wnt Signaling Pathway and Innate Immunity of Invertebrate [J]. Biotechnology Bulletin, 2021, 37(5): 182-196. |
[7] | GUO Li-li, LI Yu-ying, GUO Da-long, HOU Xiao-gai. Research Progress on High-density Genetic Linkage Map Construction of Important Ornamental Plants:a Review [J]. Biotechnology Bulletin, 2021, 37(1): 246-254. |
[8] | CHEN Yi-dan, ZHANG Yu, YANG Jie, ZHANG Qin, JIANG Li. Exploration of Key Functional Genes Affecting Milk Production Traits in Dairy Cattle Based on RNA-seq [J]. Biotechnology Bulletin, 2020, 36(9): 244-252. |
[9] | ZHANG De-rong, MA Xiao-xia, LI Yu-fei, ZHAO Yong-qing, HUO Sheng-dong, MA Zhong-ren, BAI Jia-lin. Research Progress and Prospects of Adiponectin and Its Receptor in Mammal [J]. Biotechnology Bulletin, 2020, 36(6): 236-244. |
[10] | YU Jun-jian, CHI Mei-li, JIA Yong-yi, LIU Shi-li, ZHU Jun-quan, GU Zhi-min. Tetra-primer Amplification Refractory Mutation System PCR and Its Application in Fauna and Flora Genetics and Breeding Research [J]. Biotechnology Bulletin, 2020, 36(5): 32-38. |
[11] | LI Xiao-kai, FAN Yi-xing, QIAO Xian, ZHANG Lei, WANG Feng-hong, WANG Zhi-ying, WANG Rui-jun, ZHANG Yan-jun, LIU Zhi-hong, WANG Zhi-xin, HE Li-bing, LI Jin-quan, SU Rui, ZHANG Jia-xin. Research Progress of Goat Genome and Genetic Variation Map [J]. Biotechnology Bulletin, 2020, 36(4): 175-184. |
[12] | HU Qi-chao, LUORENG Zhuo-ma, WEI Da-wei, YANG Jian, JIA Li, WANG Xing-ping, MA Yun. Research Progress on Innate Immunity-Related Coding Genes in the Regulation of Cow Mastitis [J]. Biotechnology Bulletin, 2020, 36(12): 239-246. |
[13] | ZHOU Li-ming, LU Xin-rui, MA Sheng-wei, FANG Wei. Functional Analysis of Calcium-dependent Protein Kinase CPK14 in Pollen Tube Growth [J]. Biotechnology Bulletin, 2019, 35(6): 55-61. |
[14] | LI Biao, ZHANG Rui-ying, WANG Xiao-qi, ZHANG Cun-fang, DUAN Zi-yuan. Microsatellite Polymorphism and Its Correlation Analysis with Body Size Traits of Tan Sheep [J]. Biotechnology Bulletin, 2019, 35(6): 131-137. |
[15] | HUANG Long, WU Ben-li, HE Ji-xiang, CHEN Jing, SONG Guang-tong, WANG Xiang, ZHANG Ye, WU Song. SNP Identification of MyoD1 Gene and Its Correlation with Growth Traits in Pelodiscus sinensis [J]. Biotechnology Bulletin, 2019, 35(4): 76-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||