Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (6): 39-45.
Previous Articles Next Articles
Lu Ting
Received:
2013-06-20
Revised:
2013-06-20
Online:
2013-06-20
Published:
2013-06-20
Lu Ting . Structure and Regulation Mechanism of Bacillus stearothermophilus dnaB-dnaG Complex[J]. Biotechnology Bulletin, 2013, 0(6): 39-45.
[1] Marians KJ. Prokaryotic DNA replication[J]. Annual Review of Biochemistry, 1992, 61:673-719. [2] Wickner S, Hurwitz J. Interaction of Escherichia coli dnaB and dnaC(D)gene products in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72:921-925. [3] Frick DN, Richardson CC. DNA primases[J]. Annual Reviw of Biochemistry, 2001, 70:39-80. [4] Patel SS, Picha KM. Structure and function of hexameric helicases[J]. Annual Review of Biochemistry, 2000, 69:651-697. [5] Oakley AJ, Loscha KV, Schaeffer PM, et al. Crystal and solution structures of the helicase-binding domain of Escherichia coli primase[J]. The Journal of Biological Chemistry, 2005, 280:11495-11504. [6] Syson K, Thirlway J. Hounslow AM, et al. Solution structure of the helicase-interaction domain of the primase DnaG:a model for helicase activation[J]. Structure, 2005, 13:609-616. [7] Thirlway J, Turner IJ, Gibson CT, et al. DnaG interacts with a linker region that joins the N- and C-terminal domains of DnaB and induces the formation of 3-fold symmetric rings[J]. Nucleic Acids Research, 2004, 32:2977-2986. [8] Soultanas P. The bacterial helicase(DnaB)-primase(DnaG)interaction:a common structural/functional module[J]. Structure, 2005, 13:839-844. [9] Fang L, Davey MJ, O’Donnell M. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin[J]. Molecular Cell, 1999, 4:541-553. [10] Mitkova AV, Khopde SM, Biswas SB. Mechanism and stoichiometry of DnaG primase with DnaB helicase of Escherichia coli in RNA primer synthesis[J]. The Journal of Biological Chemistry, 2003, 278:52253-52261. [11] Chang P, Marians KJ. Identification of a region of Escherichia coli DnaB required for functional interaction with DnaG at the replication fork[J]. The Journal of Biological Chemistry, 2000, 275:26187-26195. [12] Maurer R, Wong A. Dominant-lethal mutations in the dnaB helicase gene of Salmonella typhimurium[J]. Journal of Bacteriology, 1988, 170:3682-3688. [13] Stordal L, Maurer R. Defect in general priming conferred by linker region mutants of Escherichia coli DnaB[J]. Journal of Bacteriology, 1996, 178:4620-4627. [14] Goulian M, Hanaualt PC. DNA Sythesis and its regulation[M]. CA:Benjamin. ICN Parmaceuticals. Universit5y of Carlifornia, Los Angeles, 1975:241-269. [15] Arai N, Kornberg A. Rep protein as a helicase in an active, isolatable replication fork of duplex phi X174 DNA[J]. The Journal of Biological Chemistry, 1981, 256:5294-5298. [16] Huber HE, Tabor S, Richardson CC. Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates[J]. The Journal of Biological Chemistry, 1987, 262:16224-16232. [17] Tabor S, Huber HE, Richardson CC. Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7[J]. The Journal of Biological Chemistry, 1987, 262:16212-16223. [18] Tabor S, Richardson CC. Template recognition sequence for RNA primer synthesis by gene 4 protein of bacteriophage T7[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78:205-209. [19] Kolodner R, Richardson CC. Replication of duplex DNA by bacteriophage T7 DNA polymerase and gene 4 protein is accompanied by hydrolysis of nucleoside 5’-triphosphates[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74:1525-529. [20] Kim YT, Tabor S, Bortner C, et al. Purification and characterization of the bacteriophage T7 gene 2.5 protein. A single-stranded DNA-binding protein[J]. The Journal of Biological Chemistry, 1992, 267:15022-15031. [21] Kim YT, Tabor S, Churchich JE, et al. Interactions of gene 2.5 protein and DNA polymerase of bacteriophage T7[J]. The Journal of Biological Chemistry, 1992, 267:15032-15040. [22] Ilyina TV, Gorabalenya AE, Koonin EV. Organization and evolution of bacterial and bacteriophage primase-helicase systems[J]. Journal of Molecular Evolution, 1992, 34:351-357. [23] Egelman EH, Yu X, Wild R, et al. Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92:3869-3873. [24] Kim YT, Richardson CC. Bacteriophage T7 gene 2.5 protein:an essential protein for DNA replication[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90:10173-10177. [25] Kim YT, Richardson CC. Acidic carboxyl-terminal domain of gene 2.5 protein of bacteriophage T7 is essential for protein-protein interactions[J]. The Journal of Biological Chemistry, 1994, 269:5270-5278. [26] Fujiyama A, Kohara Y, Okazaki T. Initiation sites for discontinuous DNA synthesis of bacteriophage T7[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78:903-907. [27] Nakai H, Richardson CC. Leading and lagging strand synthesis at the replication fork of bacteriophage T7. Distinct properties of T7 gene 4 protein as a helicase and primase[J]. The Journal of Biological Chemistry, 1988, 263:9818-9830. [28] Kusakabe T, Baradaran K, Lee J, et al. Roles of the helicase and primase domain of the gene 4 protein of bacteriophage T7 in accessing the primase recognition site[J]. EMBO Journal, 1998, 17:1542-1552. [29] Frick DN, Richardson CC. Interaction of bacteriophage T7 gene 4 primase with its template recognition site[J]. The Journal of Biological Chemistry, 1999, 274:35889-35898. [30] Ahnert P, Patel SS. Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5’- and 3’-tails of the forked DNA substrate[J]. The Journal of Biological Chemistry, 1998, 272:32267-32273. [31] Hacker KJ, Johnson KA. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding[J]. Biochemistry, 1997, 36:14080-14087. [32] Yang S, Yu X, VanLoock MS, et al. Flexibility of the rings:structural asymmetry in the DnaB hexameric helicase[J]. Journal of Molecular Biology, 2002, 321:839-849. [33] Nunez-Ramirez R, Robledo Y, Mesa P, et al. Quaternary polymorphism of replicative helicase G40P:structural mapping and domain rearrangement[J]. Journal of Molecular Biology, 2006, 357:1063-1076. [34] Jezewska MJ, Rajendran S, Bujalowski D, Bujalowski W. Does single-stranded DNA pass through the inner channel of the protein hexamer in the complex with the Escherichia coli DnaB helicase? fluorescence energy transfer studies[J]. The Journal of Biological Chemistry, 1998, 273:10515-10529. [35] Kaplan DL. The 3’-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase[J]. Journal of Molecular Biology, 2000, 301:285-299. [36] Bailey S, Eliason WK, Steitz TA. The crystal structure of the Thermus aquaticus DnaB helicase monomer[J]. Nucleic Acids Research, 2007, 35:4728-4736. [37] Nakayama N, Arai N, Kaziro Y, et al. Structural and functional stu-dies of the dnaB protein using limited proteolysis. Characterization of domains for DNA-dependent ATP hydrolysis and for protein association in the primosome[J]. The Journal of Biological Chemistry, 1984, 259:88-96. [38] Bird LE, Pan H, Soultanas P, et al. Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearothermophilus[J]. Biochemistry, 2000, 39:171-182. [39] Mesa P, Alonso JC, Ayora S. Bacillus subtilis bacteriophage SPP1 G40P helicase lacking the n-terminal domain unwinds DNA bidirectionally[J]. Journal of Molecular Biology, 2006, 357:1077-1088. [40] Materials and methods are available as supporting material on Science Online. [41] Biswas SB, Chen PH, Biswas EE. Structure and function of Escherichia coli DnaB protein:role of the N-terminal domain in helicase activity[J]. Biochemistry, 1994, 33:11307-11314. [42] Johnson SK, Bhattacharyya S, Griep MA. DnaB helicasestimulates primer synthesis activity on short oligonucleotide templates[J]. Biochemistry, 2000, 39:736-744. [43] Corn JE, Pease PJ, Hura GL, et al. Crosstalk between primase subunits can act to regulate primer synthesis in trans[J]. Molecular Cell, 2005, 20:391-401. |
[1] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[2] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[3] | GAO Wei-xin, HUANG Huo-qing, ZHAO Jing, ZHANG Xin, YANG Ning, YANG Hao-meng. Construction and Activity Verification of Ribonucleoprotein Complex for Gene Editing [J]. Biotechnology Bulletin, 2022, 38(8): 60-68. |
[4] | GAO Meng, LI Fu-ting, WEI Zhan-lin, ZHANG Sai-hang, BAI Ru-qian, SHANG Yi, MA Ling. Component Analysis of SCFSLF Complex in Diploid Potato [J]. Biotechnology Bulletin, 2022, 38(4): 117-125. |
[5] | SUN Man-luan, GE Sai, BU Jia, ZHU Zhuang-yan. Regulation Mechanism of Ribonucleases in Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(3): 234-245. |
[6] | CAO Ru-fei, LI Ze-xuan, XU Huan, ZHANG Sha, ZHANG Min-min, DAI Feng, DUAN Xiao-lei. Expression,Purification,and Crystallization of Pif1 Helicase from Bacteroides fragilis [J]. Biotechnology Bulletin, 2021, 37(9): 180-190. |
[7] | XU Tao, XIA Dong-jian, WAN Jing, JIANG Shu-han, SONG Jiang-hua. Research Progress of F-box Protein Involved in Plant Stress [J]. Biotechnology Bulletin, 2021, 37(12): 205-211. |
[8] | CHEN Jian-qiu, HUANG Sheng, ZHAO Wei-chao, ZHAN Guan-ping, SUN Shu-jing, CHEN Li-ding. Study on the Rheological Properties of the Mixtures with Tremella fuciformis Gum [J]. Biotechnology Bulletin, 2021, 37(11): 178-189. |
[9] | CHEN Ti-qiang, XU Xiao-lan, SHI Lin-chun, ZHONG Li-Yi. Sequencing and Analysis of the Whole Genome of Zizhi Cultivar ‘Wuzhi No.2’(Ganoderma sp. strain Zizhi S2) [J]. Biotechnology Bulletin, 2021, 37(11): 42-56. |
[10] | ZOU Kun, LU Li-li, Collins Asiamah Amponsah, XUE Yuan, ZHANG Shao-wei, SU Ying, ZHAO Zhi-hui. Research Progress on Mechanism of Poultry Follicular Atresia [J]. Biotechnology Bulletin, 2020, 36(4): 185-191. |
[11] | LIU Su-yue, TIAN Jing-jing, TIAN Hong-tao, XU Wen-tao. Terbium(III)and Its Complexes:from Luminescent Properties to Sensing and Bioimaging Applications [J]. Biotechnology Bulletin, 2020, 36(4): 192-207. |
[12] | GAO Guo-ying, WU Xiao-fang, ZHANG Da-wei, ZHOU Ding-gang, ZHANG Kai-xuan, YAN Ming-li. Research Progress on the MBW Complexes in Plant Anthocyanin Biosynthesis Pathway [J]. Biotechnology Bulletin, 2020, 36(1): 126-134. |
[13] | WEI Ming-ming, ZENG Xia, AN Ze-wei, HU Yan-shi, HUANG Xiao, LI Wei-guo. Advances in the Maintenance and Termination of Floral Meristem Regulated by C-type Floral Organ Gene AGAMOUS(AG) [J]. Biotechnology Bulletin, 2020, 36(1): 135-143. |
[14] | LI Xiao-yuan, XIE Li-nan. Research Progress in Na+ Regulation Mechanism of Plants Under Salt Stress [J]. Biotechnology Bulletin, 2019, 35(7): 148-155. |
[15] | DOU Yue, LIU Mei-tong, LU An-na, WU Jia-jie, WANG Qun-qing, XU Qian. Regulatory Mechanism of Mediator Subunit MED25 on Multi-phytohormone Signaling Pathways [J]. Biotechnology Bulletin, 2018, 34(7): 40-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||