Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (8): 36-42.
• Review • Previous Articles Next Articles
Fang Shumei1, 2, Liang Xilong1, Li Chunyan2
Received:
2013-03-14
Revised:
2013-08-11
Online:
2013-08-11
Published:
2013-09-02
Fang Shumei, Liang Xilong, Li Chunyan. Bioremediation of Cyanide Contamination and Its Applications[J]. Biotechnology Bulletin, 2013, 0(8): 36-42.
[1] Baxter J, Cummings SP. The current and future applications of microorganism in the bioremediation of cyanide contamination[J]. Antonie van Leeuwenhoek, 2006, 90(1):1-17. [2] Figueira MM, Ciminelli VST, Linardi VR. Bacterial degradation of metal cyanide complexes[M]//Jerez CA, Vargas T, Toledo H, et al. Biohydrometallurgical Processing. Santiago, Chile:University of Chile, 1995:333-339. [3] Commeyras A, Taillades J, Collet H, et al. Dynamic co-evolution of peptides and chemical energetics, a gateway to the emergence of homochirality and the catalytic activity of peptides[J]. Orig Life Evol Biosph, 2004, 34(1-2):35-55. [4] Seidelmann K, Weinert H, Ferenz HJ. Wings and legs are producing sites for the desert locust courtship-inhibition pheromone, phenyla-cetonitrile[J]. J Insect Physiol, 2003, 49(12):1125-1133. [5] Mudder TI, Botz MM. Cyanide and society:a critical review[J]. The European Journal of Mineral Processing and Environmental Protection, 2004, 4(1):62-74. [6] Faull JL, Graeme-Cook KA, Pilkington BL. Production of an isonitrile antibiotic by an UV-induced mutant of Trichoderma harzianum[J]. Phytochemistry, 1994, 36(5):1273-1276. [7] Parker WL, Rathnum ML, Johnson JH, et al. Aerocyanidin, a new antibiotic produced by Chromobacterium violaceum[J]. J Antibiot, 1988, 41(4):454-460. [8] Dutra AJB, Rocha GP, Pombo FR. Copper recovery and cyanide oxi-dation by electrowinning from a spent copper-cyanide electroplating electrolyte[J]. J Hazard Mater, 2008, 152(2):648-655. [9] Xing X, Lan X, Song Y, et al. Disposal advances on “three wastes” treatment in the gold cynidation extraction process[J]. Gold, 2008, 29(12):55-61. [10] Meeussen JCL, Keizer MG, Van Riemsdijk WH, et al. Dissolution behavior of iron cyanide(prussian blue)in contaminated soils[J]. Environ Sci Technol, 1992, 26(9):1832-1838. [11] Akcil A. Destruction of cyanide in gold mill effluents:biological versus chemical treatments[J]. Biotechnol Adv, 2003, 21(6):501-511. [12] Soldán P, Pavoni? M, Bou?ek J, et al. Baia Mare accident-brief ecotoxicological report of Czech experts[J]. Ecotox Environ Safety, 2001, 49(3):255-261. [13] Fava L, Orrù MA, Crobe A, et al. Pesticide metabolites as contaminants of groundwater resources:assessment of the leaching potential of endosulfan sulfate, 2, 6-dichlorobenzoic acid, 3, 4-dichlor-oaniline, 2, 4-dichlorophenol and 4-chloro-2-methylphenol[J]. Microchem J, 2005, 79(1-2):207-211. [14] Cessna AJ, Elliott JA, Tollefson L, et al. Herbicide and nutrient transport from an irrigation district into the South Saskatchewan river[J]. J Environ Qual, 2001, 30(5):1796-1807. [15] Thomas KV, McHugh M, Hilton M, et al. Increased persistence of antifouling paint biocides when associated with paint particles[J]. Environ Poll, 2003, 123(1):153-161. [16] Sakkas VA, Lambropoulou DA, Albanis TA. Study of chlorothalonil photodegradation in natural waters and in the presence of humic substances[J]. Chemosphere, 2002, 48(9):939-945. [17] Dorr PK, Knowles CJ. Cyanide oxygenase and cyanase activities of Pseudomonas fluorescens NCIMB 11764[J]. FEMS Microbiol Lett, 1989, 60(3):289-294. [18] Watanabe A, Yano K, Ikebukuro K, et al. Cyanide hydrolysis in a cyanide-degrading bacterium, Pseudo monas stutzeri AK61, by cyanidase[J]. Microbiology, 1998, 144(6):1677-1682. [19] Ingvorsen K, Hojerpedersen B, Godtfredsen SE. Novel cyanide-hydrolysing enzyme from Alcaligenes xylosoxidans subsp. denitrifi-cans[J]. Appl Environ Microbiol, 1991, 57:1783-1789. [20] Meyers PR, Gokool P, Rawlings DE, et al. An efficient cyanide-degrading Bacillus pumilus strain[J]. Microbiology, 1991, 137(6):1397-1400. [21] Kao CM, Liu JK, Lou HR, et al. Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca[J]. Chemosphere, 2003, 50(8):1055-1061. [22] Naveen D, Majumder CB, Mondal P, et al. Biological treatment of cyanide containing wastewater[J]. Res J Chem Sci, 2011, 1(7):15-21. [23] Chen CY, Kao CM, Chen SC. Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater[J]. Chemosphere, 2008, 71(1):133-139. [24] Martínková L, Vejvoda V, Kaplan O, et al. Fungal nitrilases as biocatalysts:Recent developments[J]. Biotechnol Adv, 2009, 27(6):661-670. [25] Ezzi MI, Lynch JM. Biodegradation of cyanide by Trichoderma spp. and Fusarium spp.[J]. Enz Microb Technol, 2005, 36(7):849-854. [26] Cabuk A, Unal AT, Kolankaya N. Biodegradation of cyanide by a white rot fungus, Trametes versicolor[J]. Biotechnol Lett, 2006, 28(16):1313-1317. [27] Shpak VE, Podolskaya VI, Ulberg ZR, et al. Degradation of metal-cyanide complexes in microbe dispersions[J]. Coll J, 1995, 57(1):102-105. [28] Adjei MD, Ohta Y. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3[J]. J Biosci Bioengineer, 2000, 89(3):274-277. [29] Luque-Almagro VM, Huertas MJ, Martínez-Luque M, et al. Bacterial degradation of cyanide and its metal complexes under alkaline conditions[J]. Appl Environ Microbiol, 2005, 71(2):940-947. [30] Finnegan I, Toerien S, Abbot L, et al. Identification and characterisation of an Acinetobacter sp. capable of assimilation of a range of cyano-metal complexes, free cyanide ions and simple organic nitriles[J]. Appl Microbiol Biotechnol, 1991, 36(1):142-144. [31] Kunz DA, Fernandez RF, Parab P. Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase[J]. Biochem Biophys Res Comm, 2001, 287(2):514-518. [32] Seung-Mok L, Diwakar T. Application of ferrate(VI)in the treatment of industrial wastes containing metal-complexed cyanides:A green treatment[J]. J Environ Sci, 2009, 21(10):1347-1352. [33] Barclay M, Day JC, Thompson IP, et al. Substrate-regulated cyanide hydratase(chy)gene expression in Fusarium solani:the potential of a transcription-based assay for monitoring the biotransformation of cyanide complexes[J]. Environ Microbiol, 2002, 4(3):183-189. [34] Dash RR, Gaurb A, Balomajumder C. Cyanide in industrial wastewaters and its removal:A review on biotreatment[J]. J Hazard Mater, 2009, 163(1):1-11. [35] Chelme-Ayala P, El-Din MG, Smith DW. Kinetics and mechanism of the degradation of two pesticides in aqueous solutions by ozonation[J]. Chemosphere, 2010, 78(5):557-562. [36] Nigam VK, Khandelwal AK, Gothwal RK, et al. Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp.[J]. J Biosci, 2009, 34(1):21-26. [37] Santoshkumar M, Veeranagouda Y, Lee K, et al. Utilization of aliphatic nitrile by Paracoccus sp. SKG isolated from chemical waste samples[J]. Int Biodeterior Biodegrad, 2011, 65(1):153-159. [38] Alfani F, Cantarella M, Spera A. et al. Operational stability of Brevibacterium imperialis CBS 489-74 nitrile hydratase[J]. J Mol Cat B:Enz, 2001, 11(4-6):687-697. [39] Komeda H, Kobayashi M, Shimizu S. Characterization of the gene cluster of high-molecular-mass nitrile hydratase(H-NHase)induced by its reaction product in Rhodococcus rhodochrous Jl[J]. Proc Natl Acad Sci USA, 1996, 93(9):4267-4272. [40] Cramp R, Gilmour M, Cowan DA. Novel thermophilic bacteria producing nitrile-degrading enzymes[J]. Microbiology, 1997, 143(7):2313-2320. [41] Asano Y, Fujishiro K, Tani Y, et al. Aliphatic nitrile hydratase from Arthrobacter sp. J1- purification and characterization[J]. Agric Biol Chem, 1982, 46(5):1165-1174. [42] Bhalla TC, Kumar H. Nocardia globerula NHB-2:a versatile nitrile-degrading organism[J]. Can J Microbiol, 2005, 51(8):705-708. [43] Collins PA, Knowles CJ. The utilization of nitriles and amides by Nocardia rhodochrous[J]. Microbiology, 1983, 129(3):711-718. [44] Vejvoda V, Kubá? D, Davidová A, et al. Purification and characte-rization of nitrilase from Fusarium solani IMI196840[J]. Process Biochemistry, 2010, 45(7):1115-1120. [45] Ebbs S. Biological degradation of cyanide compounds[J]. Curr Opin Biotech, 2004, 15(3):231-236. [46] Gupta N, Balomajumder C, Agarwal VK. Enzymatic mechanism and biochemistry for cyanide degradation:A review[J]. J Hazard Mater, 2010, 176(1-3):1-13. [47] Kobayashi M, Shimizu S. Versatile nitrilases:nitrile-hydrolysing enzymes[J]. FEMS Microbiol Lett, 1994, 120(3):217-224. [48] Kobayashi M, Shimizu S. Nitrile hydrolases[J]. Curr Opin Chem Biol, 2000, 4(1):95-102. [49] Kobayashi M, Fujiwara Y, Goda M, et al. Identification of active sites in amidase:Evolutionary relationship between amide bond- and peptide bond-cleaving enzymes[J]. Proc Natl Acad Sci USA, 1997, 94(22):11986-11991. [50] O’Reilly C, Turner PD. The nitrilase family of CN hydrolysing enzymes-a comparative study[J]. J Appl Microbiol, 2003, 95(6):1161-1174. [51] Kao CM, Chen KF, Liu JK, et al. Enzymatic degradation of nitriles by Klebsiella oxytoca[J]. Appl Microbiol Biotechnol, 2006, 71(2):228-233. [52] Liu JK, Liu CH, Lin CS. The role of nitrogenase in a cyanide-degrading Klebsiella oxytoca strain[J]. Proc Natl Sci Counc Repub China, 1997, 21(2):37-42. [53] Van Lanen SG, Reader JS, Swairjo MA, et al. From cyclohydrolase to oxidoreductase:Discovery of nitrile reductase activity in a common fold[J]. PNAS, 2005, 102(12):4264-4269. [54] Wilding B, Winkler M, Petschacher B, et al. Nitrile reductase from Geobacillus kaustophilus:A potential catalyst for a new nitrile biotransformation reaction[J]. Adv Synth Catal, 2012, 354(11-12):2191-2198. [55] Dash RR, Gaur A, Balomajumder C. Cyanide in industrial waste waters and its removal:A review on biotreatment[J]. J Hazard Mater, 2009, 163(1):1-11. [56] Akcil A, Karahan AG, Ciftci H, et al. Biological treatment of cyanide by natural isolated bacteria(Pseudomonas sp.)[J]. Miner Eng, 2003, 16(7):643-649. [57] Ferguson AS, Doherty R, Larkin MJ, et al. Toxicity assessment of a former manufacture gas plant[J]. Bull Environ Cont Toxicol, 2003, 71(1):21-30. [58] Huertasa MJ, Sáez LP, Roldán MD, et al. Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH[J]. J Hazard Mater, 2010, 179(1-3):72-78. [59] Gurbuz F, Ciftci H, Akcil A, et al. Biodegradation of cyanide containing effluents by Scenedesmus obliquus[J]. J Hazard Mater, 2009, 162(1):74-79. [60] Adjei MD, Ohta Y. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3[J]. J Biosci Bioeng, 2000, 89(3):274-277. [61] Dash RR, Balomajumder C, Kumar A. Treatment of metal cyanide bearing wastewater by simultaneous adsorption biodegradation(SAB)[J]. J Hazard Mater, 2008, 152(1):387-396. [62] Manolov T, Kristina H, Benoit G. Continuous acetonitrile degrada-tion in a packed-bed bioreactor[J]. Appl Microbiol Biotechnol, 2005, 66(5):567-574. [63] Li C, Li Y, Cheng X, et al. Immobilization of Rhodococcus rhodochrous BX2(an acetonitrile-degrading bacterium)with biofilm-forming bacteria for wastewater treatment[J]. Bioresour Technol, 2013, 131:390-396. |
[1] | XV Ru-yue, WANG Zi-xiao, SHEN Lu, WU Rong-rong, YAO Fang-ting, TAN Zhong-yuan, LIU Heng-wei, ZHANG Wen-chao. Research Progress in Bioremediation of Cr(VI) [J]. Biotechnology Bulletin, 2023, 39(6): 49-60. |
[2] | CHEN Ming-yu, NI Xuan, SI You-bin, SUN Kai. Advances in the Application of Immobilized Fungal Laccase for the Bioremediation of Environmental Organic Contamination [J]. Biotechnology Bulletin, 2021, 37(6): 244-258. |
[3] | GUO Wei, XUE Shuai, ZHANG Zhe-chao, DIAO Feng-wei, HU Jie, ZHANG Min, LIU Mei-chun, DING Sheng-li, JIA Bing-bing, SHI Zhong-qi. Research Progress on Bioremediation of Saline-alkali Grassland:A Review [J]. Biotechnology Bulletin, 2020, 36(7): 200-208. |
[4] | WANG Zi-long ,LUO Xue-gang ,SI Hui ,WANG Zhuo. Effects of Manganese and Arsenic on Uranium Enrichment of Bacillus licheniformis [J]. Biotechnology Bulletin, 2018, 34(6): 164-171. |
[5] | JI Mei-chen, ZHANG Ji-quan, PENG Yue, MA Qi-yun. Research on the Resistances of Several Kinds of Hydrophyte to Lead in Hydroponic Condition [J]. Biotechnology Bulletin, 2017, 33(8): 120-125. |
[6] | HAO Da-cheng, ZHOU Jian-qiang, HAN Jun. Microbial Remediation of Soil Heavy Metal and Organic Pollutants:Bioaugmentation and Biostimulation [J]. Biotechnology Bulletin, 2017, 33(10): 9-17. |
[7] | WANG Li-hui, YAN Chao-yu, WANG Hao, ZHANG Xiang-yu. Research Progress on Bioremediation Techniques for Mercury-contaminated Soil [J]. Biotechnology Bulletin, 2016, 32(2): 51-58. |
[8] | Sun Wanhong, Chen Lihua, Xu Hongwei. Effects of Nitrogen and Phosphorus Contents on the Oil Degradation Rate [J]. Biotechnology Bulletin, 2015, 31(6): 157-164. |
[9] | Zhang Hairong, Tang Jingchun, Sun Kejing, Zhang Qingmin. Isolation and Identification of Saline-alkaline Tolerant Hydrocarbon-degrading Strains and Study on Their Saline-alkaline Tolerant Characteristics [J]. Biotechnology Bulletin, 2015, 31(1): 151-159. |
[10] | Zhang Qiang, Liu Bin, Liu Wei, Ren Jin, Xu Sheng, Zhang Bin. The Biological Remediation Technology for the Contaminated Soil [J]. Biotechnology Bulletin, 2014, 0(10): 56-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||