Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (2): 10-17.doi: 10.13560/j.cnki.biotech.bull.1985.2015.02.002
• Review and editorial • Previous Articles Next Articles
Guo Hang1, Wang Zhimin1, Tang Qinglin1, Tian Shibing2, Yang yang2, Song Ming1
Received:
2014-05-23
Online:
2015-02-05
Published:
2015-02-06
Guo Hang, Wang Zhimin, Tang Qinglin, Tian Shibing, Yang yang, Song Ming. Progress on Regulation of Anther Dehiscence by Jasmonic Acid[J]. Biotechnology Bulletin, 2015, 31(2): 10-17.
[1] McConn M, Browse J. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant[J]. The Plant Cell, 1996, 8:403-416. [2] Hause B, Mrosk C, Isayenkov S, et al. Jasmonates in arbuscular mycorrhizal interactions[J]. Phytochemistry, 2007, 68:101-110. [3] Scott RJ, Spielman M, Dickinson HG. Stamen structure and function[J]. The Plant Cell, 2004, 16(Suppl 1):46-60. [4] Hatakeyama K, Ishiguro S, Okada K, et al. Antisense inhibition of a nuclear gene, BrDAD1, in Brassica causes male sterility that is restorable with jasmonic acid treatment[J]. Molecular Breeding, 2003, 11:325-336. [5] 华水金, 王学德, 孟华兵, 等. 油菜控制花药开裂基因的分子克隆[C]. 第十二届国际油菜大会论文集, 2007. [6] 向群, 张立平, 赵昌平, 等. 外源茉莉酮酸甲酯通过调节相关基因表达诱导光温敏雄性不育小麦BS366 离体花药开裂[J]. 中国生物化学与分子生物学报, 2010, 26(11):1028-1035. [7] 马骅. 茉莉酸甲酯(MeJA)诱导光温敏雄性不育小麦花药开裂的研究[D]. 呼和浩特:内蒙古农业大学, 2011. [8] Ziegler J, Stenzel I, Hause B, et al. Molecular cloning of allene oxide cyclase the enzyme establishing the stereochemistry of octadecanoids and jasmonates[J]. J Biol Chem, 2000, 275:19132-1913. [9] Ishiguro S, Kawai-Oda A, Ueda J, et al. The DEFECTIVE IN ANTHER DEHISCENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis[J]. The Plant Cell, 2001, 13:2191-2209. [10] Richmond GS, Smith TK. Phospholipases A1[J]. International Journal of Molecular Sciences, 2011, 12(1):588-612. [11] Feys B, Benedetti CE, Penfold CN, et al. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen[J]. The Plant Cell, 1994, 6:751-759. [12] Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis[J]. Proc Nat Acad Sci USA, 2000, 97:10625-10630. [13] Park JH, Halitschke R, Kim HB, et al. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis[J]. Plant J, 2002, 31:1-12. [14] Hyun Y, Choi S, Hwang HJ, et al. Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis[J]. Dev Cell, 2008, 14:183-192. [15] Ellinger D, Stingl N, Kubigsteltig II, et al. DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis:redundant lipases contribute to jasmonate formation[J]. Plant Physiol, 2010, 153:114-127. [16] Sanders PM, Lee PY, Biesgen C, et al. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic synthesis pathway Ellinger[J]. The Plant Cell, 2000, 12:1041-1061. [17] Chen GJ, Cao BH, XuF, et al. Development of adjustable male sterile plant in broccoli by antisense DAD1 fragment transformation[J]. AJB, 2010, 9:4534-4541. [18] Wilson ZA, Song J, Taylor B, et al. The final split:the regulation of anther dehiscence[J]. J Exp Bot, 2011, 62(5):1633-1649. [19] Stadler R, Truernit E, et al. The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis[J]. Plant J, 1999, 19:269-278. [20] Peng YP, Shih CF, Yang JY, et al. A RING-type E3 ligase controls anther dehiscence by activating the jasmonate biosynthetic pathway gene DEFECTIVE IN ANTHER DEHISCENCE1 in Arabidopsis[J]. Plant J, 2013, 74:310-327. [21] Andreou A, Brodhun F, Feussner I. Biosynthesis of oxylipins in non-mammals[J]. Prog Lipid Res, 2009, 48:148-170. [22] Burow GB, Gardner HW, Keller NP. A peanut seed lipoxygenase responsive to Aspergillus colonization[J]. Plant Molecular Biology, 2000, 42:689-701. [23] Bannenberg G, Martínez M, Hamberg M, et al. Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana[J]. Lipids, 2009, 44:85-95. [24] Glauser G, Dubugnon L, et al. Velocity estimates for signal propag-ation leading to systemic jasmonic acid accumulation in wounded Arabidospsis[J]. J Biol Chem, 2009, 284:34506-34513. [25] Seltmann MA, Stingl NE, Lautenschlaeger JK, et al. Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis thaliana[J]. Plant Physiol, 2010, 152:1940-1950. [26] Wasternack C, Hause B. Jasmonates:biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany[J]. AnnalsofBotany, 2013, 111:1021-1058. [27] Caldelari D, Wang G, Farmer EE, et al. Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest[J]. PlantMolecular Biology, 2011, 75:25-33. [28] 吴劲松, 种康. 茉莉酸作用的分子生物学研究[J]. 植物学通报, 2002, 19(2):164-170. [29] Maucher H, Hause B, Feussner I, et al. Allene oxide synthases of barley(Hordeum vulgare. Salome):tissue specific regulation in seedling development[J]. Plant J, 2000, 21:199-213. [30] Von Malek B, Van der Graaff E, Schneitz K, et al. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway[J]. Planta, 2002, 216:187-192. [31] Bae HK, Kang HG, et al. Transgenic rice plants carrying RNA interference constructs of AOS(allene oxide synthase) genes show severe male sterility[J]. Plant Breeding, 2010, 129:647-651. [32] Stenzel I, Hause B, Miersch O, et al. Jasmonate biosynthesis and the allene oxide cyclase family ofArabidopsis thaliana[J]. Plant Molecular Biology, 2003, 51(6):895-911. [33] Hause B, Stenzel I, Miersch O, et al. Occurrence of the allene oxide cyclase in different organs and tissues of Arabidopsis thaliana[J]. Phytochemistry, 2003, 64:971-980. [34] Weber H. Fatty acid-derived signals in plants[J]. TRENDS in Plant Science, 2002, 7(5):217-224. [35] Yan Y, Christensen S, Isakeit T, et al. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense[J]. Plant Cell, 2012, 24:1420-1436. [36] Li S, Ma J, Liu P. OPR3 is expressed in phloem cells and is vital for lateral root development in Arabidopsis[J]. Canadian Journal of Plant Science, 2013, 93(2):165-170. [37] Schaller F, Biesgen C, Müssig C, et al. 2-Oxophytodienoate reductase 3(OPR3) is the isoenzyme involved in jasmonate biosynthesis[J]. Planta, 2000, 210:979-984. [38] Sanders PM, Bui AQ, Weterings K, et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants[J]. Sex Plant Reprod, 1999, 11:297-322. [39] Biesgen C, Weiler EW. Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10, 11-reductases[J]. Planta, 1999, 208:155-165. [40] Farmer EE, Weber H, Vollenweider S. Fatty acid signaling in Arabidopsis[J]. Planta, 1998, 206:167-174. [41] Song S, Qi T, Huang H, et al. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis[J]. Molecular Plant, 2013, 6(4):1065-1073. [42] Katsir L, Schilmiller AL, Staswick PE, et al. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine[J]. The PNAS, 2008, 105:7100-7105. [43] Yan J, Zhang C, Gu M, et al. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor[J]. Plant Cell, 2009, 21:2220-2236. [44] Thines B, Katsir L, Melotto M, et al. JA repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling[J]. Nature, 2007, 448:661-665. [45] Xie DX, Feys BF, James S, et al. COI1:an Arabidopsis gene required for jasmonate-regulated defense and fertility[J]. Science, 1998, 280:1091-1094. [46] Devoto A, Nieto-Rostro M, Xie D, et al. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis[J]. Plant J, 2002, 32:457-466. [47] Huang H, Wang C, Tian H, et al. Amino acid substitutions of GLY98, LEU245 and GLU543 in COI1 distinctively affect jasmonate-regulated male fertility in Arabidopsis[J]. Science China Life Sciences, 2014, 57(1):145-154. [48] Kim SG, Lee S, et al. Activation tagging of anArabidopsis SHI-RELATED SEQUENCEgene produces abnormal anther dehiscence and floral development[J]. Plant Mol Biol, 2010, 74:337-351. [49] Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activa- ted by an enzyme that conjugates it to isoleucine in Arabidopsis [J]. Plant Cell, 2004, 16:2117-2127. [50] Fonseca S, Chini A, Hamberg M, et al. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate[J]. Nature Chemical Biology, 2009, 5:344-350. [51] Xiao YG, Chen Y, Charnikhova T, et al. OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice[J]. PlantMolecular Biology, 2014, 86(1-2):19-33. [52] Ito T, Ng KH, Lim TS, et al. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis[J]. The Plant Cell, 2007, 19:3516-3529. [53] Mandaokar A, Thines B, Shin B, et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling[J]. Plant J, 2006, 46:984-1008. [54] Mandaokar A, Browse J. MYB108 acts together with MYB24 to re-gulate jasmonate-mediated stamen maturation in Arabidopsis[J]. Plant Physiology, 2009, 149:851-862. [55] Cheng H, Song S, Xiao L, et al. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis[J]. PLoS Genet, 2009, 5:e1000440. [56] Shin B, Choi G, Yi H, et al. AtMYB21, a gene encoding a flower-specific transcription factor, is regulated by COP1[J]. Plant J, 2002, 30:23-32. [57] Yang C, Xu Z, et al. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence[J]. Plant Cell, 2007, 19:534-548. [58] Nagpal P, Ellis CM, Weber H, et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation[J]. Development, 2005, 132:4107-4118. [59] Tabata R, Ikezaki M, Fujibe T, et al. Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes[J]. Plant Cell Physiol, 2010, 51:164-175. [60] Reeves PH, Ellis CM, et al. A regulatory network for coordinated flower maturation[J]. PLoS Genet, 2012, 8:e1002506. [61] Wang J, Yan D, Yuan T, et al. A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level[J]. PlantMolecular Biology, 2013, 82:71-83. [62] Cecchetti V, Altamura MM, Serino G, et al. ROX1, a gene induced by rolB, is involved in procambial cell proliferation and xylem differentiation in tobacco stamen[J]. Plant J, 2007, 49:27-37. [63] Cecchetti V, Altamura MM, Falasca G, et al. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation[J]. Plant Cell, 2008, 20:1760-1774. [64] Cecchetti V, Altamura MM, Brunetti P, et al. Auxin controls Arab-idopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis[J]. Plant J, 2013, 74:411-422. [65] Li X, Qin G, Chen Z, et al. A gain-of-function mutation of transcrip-tional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis[J]. Plant Mol Biol, 2008, 66:315-327. [66] Song S, Qi T, Huang H, Ren Q, et al. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis[J]. Plant Cell, 2011, 23:1000-1013. [67] Wang Z, Liang Y, Li C, et al. Microarray analysis of gene expression involved in anther development in rice(Oryza sativa L.) [J]. Plant Molecular Biology, 2005, 58:721-737. [68] Kazan K, Manners JM. MYC2:the master in action[J]. Molecular Plant, 2013, 6:686-703. [69] Wasternack C. Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie’s lab and the Chuanyou Li’s lab[J]. Plant Cell Reports, 2014, 33:707-718. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[3] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[4] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[5] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[6] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[7] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[8] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[9] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[10] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[11] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[12] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[13] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[14] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[15] | WANG Nan-nan, WANG Wen-jia, ZHU Qiang. Research Progress of microRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2022, 38(8): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||