[1] Kavšček M, Stražar M, Curk T, et al. Yeast as a cell factory:current state and perspectives[J]. Microbial Cell Factories, 2015, 14(1):1. [2] Mnaimneh S, Davierwala AP, Haynes J, et al. Exploration of essential gene functions via titratable promoter alleles[J]. Cell, 2004, 118(1):31-44. [3] Weinhandl K, Winkler M, Glieder A, et al. Carbon source dependent promoters in yeasts[J]. Microbial Cell Factories, 2014, 13(1):1. [4] Blazeck J, Alper HS. Promoter engineering:recent advances in controlling transcription at the most fundamental level[J]. Biotechnology Journal, 2013, 8(1):46-58. [5] Blazeck J, Garg R, Reed B, et al. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters[J]. Biotechnology Bioengineering, 2012, 109:2884-2895. [6] Peng B, Williams TC, Henry M, et al. Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift:a comparison of yeast promoter activities[J]. Microbial Cell Factories, 2015, 14:91. [7] Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36):12678-12683. [8] Westfall PJ, Pitera DJ, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109:E111-E118. [9] Zhao XQ, Bai FW. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production[J]. Journal of Biotechnology, 2009, 144(1):23-30. [10] Blazeck J, Liu L, Redden H, et al. Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach[J]. Applied and Environmental Microbiology, 2011, 77(22):7905-7914. [11] 熊亮, 程诚, 李凯, 等. 菊芋秸秆高浓度物料分步糖化及乙醇发酵[J]. 应用与环境生物学报, 2016, 22(3):382-387. [12] Sheff MA, Thorn KS. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae[J]. Yeast, 2004, 21:661-670. [13] Taxis C, Knop M. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae[J]. Biotechniques, 2006, 40(1):73-78. [14] Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nature Protocols, 2007, 2(1):31-34. [15] Leavitt JM, Alper HS. Advances and current limitations in transcript-level control of gene expression[J]. Current Opinion in Biotechnology, 2015, 34:98-104. [16] Blazeck J, Alper H. Systems metabolic engineering:Genome-scale models and beyond[J]. Biotechnology Journal, 2010, 5(7):647-659. [17] Watanabe D, Kaneko A, Sugimoto Y, et al. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions[J]. Journal of Bioscience and Bioengineering, 2016, pii:S1389-1723(16)30202-X. doi:10. 1016/j. jbiosc. 2016. 08. 004. [18] Rasool A, Zhang G, Li Z, et al. Engineering of the terpenoid pathway in Saccharomyces cerevisiae co-overproduces squalene and the non-terpenoid compound oleic acid[J]. Chemical Engineering Science, 2016, 152:457-467. [19] Partow S, Siewers V, Bjørn S, et al. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae[J]. Yeast, 2010, 27(11):955-964. [20] Vickers CE, Bydder SF, Zhou Y, et al. Dual gene expression cassette vectors with antibiotic selection markers for engineering in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2013, 12:96. [21] Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks[J]. Biotechnology Advances, 2008, 26(1):89-105. [22] Yamauchi Y, Izawa S. Prioritized expression of BTN2 of Saccharomyces cerevisiae under pronounced translation repression induced by severe ethanol stress[J]. Frontiers in Microbiology, 2016, 7:1319. [23] Redden H, Alper HS. The development and characterization of synthetic minimal yeast promoters[J]. Nature Communications, 2015, 6:7810. [24] Ganapathi M, Palumbo MJ, Ansari SA, et al. Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast[J]. Nucleic Acids Research, 2011, 39(6):2032-2044. |