Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (1): 1-14.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0024
WANG Zhu-jun1,2, WANG Shang1, LIU Yang-ying1,2, FENG Kai1,2, DENG Ye1,2
Received:
2018-01-05
Online:
2018-01-26
Published:
2018-01-22
WANG Zhu-jun, WANG Shang, LIU Yang-ying, FENG Kai, DENG Ye. The Applications of Metagenomics in the Detection of Environmental Microbes Involving in Nitrogen Cycle[J]. Biotechnology Bulletin, 2018, 34(1): 1-14.
[1] Canfield DE, Glazer AN, Falkowski PG. The evolution and future of earth’s nitrogen cycle[J]. Science, 2010, 330:192-196. [2] Nelson MB, Martiny AC, Martiny JB. Global biogeography of microbial nitrogen-cycling traits in soil[J]. Proc Natl Acad Sci USA, 2016, 113:8033-8040. [3] Jetten MS. The microbial nitrogen cycle[J]. Environ Microbiol, 2008, 10(11):2903-2909. [4] Venter JC RK, Heidelberg JF, Halpern AL, et al. Environmental genome shotgun sequencing of the sargasso sea[J]. Science, 2004, 304:66-74. [5] Konneke M, Bernhard AE, de la Torre JR, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437:543-546. [6] He JZ, Zhang LM. Advances in ammonia-oxidizing microorganisms and global nitrogen cycle[J]. Acta Ecologica Sinica, 2009, 29:406-415. [7] Monteiro M, Seneca J, Magalhaes C. The history of aerobic ammonia oxidizers:from the first discoveries to today[J]. J Microbiol, 2014, 52:537-47. [8] Daims H, Lebedeva EV, Pjevac P, et al. Complete nitrification by nitrospira bacteria[J]. Nature, 2015, 528:504-509. [9] van Kessel MA, Speth DR, Albertsen M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528:555-559. [10] Baptista JD, Lunn M, Davenport RJ, et al. Agreement between amoA gene-specific quantitative PCR and fluorescence in situ hybridization in the measurement of ammonia-oxidizing bacteria in activated sludge[J]. Appl Environ Microbiol, 2014, 80:5901-5910. [11] Deng Y, Feng K, Wei ZY, et al. Recent studies and applications of metagenomics in environmental engineering[J]. Chinese Journal of Environmental Engineering, 2016, 10:3373-3382. [12] Liu YY, Wang S, Li SZ, et al. Advances in molecular ecology on microbial functional genes of carbon cycle[J]. Microbiology China, 2017, 44:1676-1689. [13] Bustin S, Benes V, Garson J, et al. The miqe guidelines:minimum information for publication of quantitative real-time pcr experiments[J]. Clinical Chemistry, 2009, 55:611-622. [14] Jia ZJ. Principle and application of DNA-based stable isotope Probing—A review[J]. Acta Microbiologica Sinica, 2011, 51:1585-1594. [15] Ge Y, He JZ, Zheng YM, et al. Stable isotope probing and its applications in microbial ecology[J]. Acta Ecologica Sinica, 2006, 26:1574-1582. [16] He SB, Chai LQ, Tan JJ, et al. Rencent advance in fluorescence in situ hybridization[J]. Plant Science Journal, 2014, 32:199-204. [17] Lin H, Fang SG. Genomic library construction and perspectives on applications in conservation genetics[J]. Acta Theriologica Sinica, 2005, 25:86-90. [18] Zhu ZX, Chen X. Single cell sequencing technology and its applications progress[J]. Genomics and Applied Biology, 2015, 34:000902-908. [19] Blainey PC. The future is now:single-cell genomics of bacteria and archaea[J]. FEMS Microbiol Rev, 2013, 37:407-427. [20] Tu Q, Yu H, He Z, et al. Geochip 4:A functional gene-array-based high-throughput environmental technology for microbial community analysis[J]. Mol Ecol Resour, 2014, 14:914-928. [21] Spencer SJ, Tamminen MV, Preheim SP, et al. Massively parallel sequencing of single cells by epicpcr links functional genes with phylogenetic markers[J]. ISME J, 2016, 10:427-436. [22] Schmidt TM, Delong EF, Pace NR. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing[J]. Journal of Bacteriology, 1991, 173:4371. [23] Manz W, Szewzyk U, Ericsson P, et al. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-Directed fluorescent oligonucleotide probes[J]. Applied & Environmental Microbiology, 1993, 59:2293-2298. [24] Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol, 1993, 59:695-700. [25] Liu WT, Marsh TL, Cheng H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J]. Applied & Environmental Microbiology, 1997, 63:4516-4522. [26] Radajewski S, Ineson P, Parekh NR, et al. Stable-isotope probing as a tool in microbial ecology[J]. Nature, 2000, 403:646-649. [27] Chandler DP, Stults JR, Cebula S, et al. Affinity purification of DNA and RNA from environmental samples with peptide nucleic acid clamps[J]. Applied & Environmental Microbiology, 2000, 66:3438-3445. [28] Wu L, Thompson DK, et al. Development and evaluation of functi- onal gene arrays for detection of selected genes in the environment [J]. Appl Environ Microbiol, 2001, 67:5780-5790. [29] Poinar HN, Schwarz C, Qi J, et al. Metagenomics to paleogenomics:Large-scale sequencing of mammoth DNA[J]. Science, 2006, 311:392-394. [30] Edwards RA, Rodriguez-Brito B, Wegley L, et al. Using pyrosequencing to shed light on deep mine microbial ecology[J]. BMC Genomics, 2006, 7:57. [31] Yoon HS, Price DC, Stepanauskas R, et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists[J]. Science, 2011, 332:714-717. [32] Novak R, Zeng Y, Shuga J, et al. Single-cell multiplex gene detection and sequencing with microfluidically generated agarose emulsions[J]. Angew Chem Int Ed Engl, 2011, 50:390-395. [33] Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied & Environmental Microbiology, 1997, 63:4704. [34] Purkhold U, Pommereningröser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis:implications for molecular diversity surveys[J]. Applied & Environmental Microbiology, 2000, 66:5368-5382. [35] Horz HP, Rotthauwe JH, Lukow T, et al. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products[J]. Journal of Microbiological Methods, 2000, 39:197-204. [36] Oved T, Shaviv A, Goldrath T, et al. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil[J]. Appl Environ Microbiol, 2001, 67:3426-3433. [37] Harms G, Layton AC, Dionisi HM, et al. Real-Time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant[J]. Environmental Science & Technology, 2003, 37:343-351. [38] Freitag TE, Chang L, Prosser JI. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient[J]. Environ Microbiol, 2006, 8:684-696. [39] Yergeau E, Hogues H, Whyte LG, et al. The functional potential of high arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses[J]. ISME J, 2010, 4:1206-1214. [40] Gaby JC, Buckley DH. A Comprehensive aligned nifh gene database:a multipurpose tool for studies of nitrogen-fixing bacteria[J]. Database(Oxford), 2014, 2014:bau001. [41] Raymond J, Siefert JL, Staples CR, et al. The natural history of nitrogen fixation[J]. Mol Biol Evol, 2004, 21:541-554. [42] Soni R, Suyal DC, Sai S, et al. Exploration of nifh gene through soil metagenomes of the western indian himalayas[J]. Biotech, 2016, 6:1-4. [43] Chien Y T, Zinder SH. Cloning, DNA sequencing, and characterization of a nifD-homologous gene from the archaeon Methanosarcina barkeri 227 which resembles nifD1 from the eubacterium Clostridium pasteurianum[J]. Journal of Bacteriology, 1994, 176:6590-6598. [44] Wang J, Bao JT, Li XR, et al. Molecular ecology of nifh genes and transcripts along a chronosequence in revegetated areas of the tengger desert[J]. Microb Ecol, 2016, 71:150-163. [45] Wang J, Zhang D, Zhang L, et al. Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season[J]. Agriculture, Ecosystems & Environment, 2016, 216:116-124. [46] Zhang B, Penton CR, Xue C, et al. Evaluation of the ion torrent personal genome machine for gene-targeted studies using amplicons of the nitrogenase gene nifh[J]. Appl Environ Microbiol, 2015, 81:4536-4545. [47] Wang L, Yu Z, Yang J, et al. Diazotrophic bacterial community variability in a subtropical deep reservoir is correlated with seasonal changes in nitrogen[J]. Environ Sci Pollut Res Int, 2015, 22:19695-19705. [48] Xiao P, Jiang Y, Liu Y, et al. Re-evaluation of the diversity and distribution of diazotrophs in the south china sea by pyrosequencing the nifh gene[J]. Marine and Freshwater Research, 2015, 66:681. [49] Chen CL, Wu MN, Wei WX. Effect of long-term application of nitrogen fertilizer on the diversity of nitrifying genes(amoa and hao)in paddy soil[J]. Environmental Science, 2011, 32:1489-1496. [50] Wertz S, Poly F, Le Roux X, et al. Development and application of a PCR-denaturing gradient gel electrophoresis tool to study the diversity of Nitrobacter-like nxrA sequences in soil[J]. FEMS Microbiol Ecol, 2008, 63:261-271. [51] Avrahami S, Conrad R. Cold-temperate climate:a factor for selection of ammonia oxidizers in upland soil?[J]Can J Microbiol, 2005, 51:709-714. [52] Purkhold U, Pommerening-Röser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis:implications for molecular diversity surveys[J]. Applied & Environmental Microbiology, 2001:5368-5382. [53] Cubillos AM, Vallejo VE, Arbeli Z, et al. Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia[J]. European Journal of Soil Biology, 2016, 72:42-50. [54] Yang YD, Ren YF, Wang XQ, et al. Ammonia-oxidizing archaea and bacteria responding differently to fertilizer type and irrigation frequency as revealed by Illumina Miseq sequencing[J]. Journal of Soils and Sediments, 2017:1-12. [55] Gao J, Luo X, Wu G, et al. Abundance and diversity based on amoA genes of ammonia-oxidizing archaea and bacteria in ten astewater treatment systems[J]. Applied Microbiology & Biotechnology, 2013, 98:3339-3354. [56] Zhang Y, Tian Z, Liu M, et al. High Concentrations of the antibiotic spiramycin in wastewater lead to high abundance of ammonia-oxidizing archaea in nitrifying populations[J]. Environ Sci Technol, 2015, 49:9124-132. [57] Vetterli A, Hietanen S, Leskinen E. Spatial and temporal dynamics of ammonia oxidizers in the sediments of the gulf of Finland, Baltic Sea[J]. Mar Environ Res, 2016, 113:153-63. [58] Bertagnolli AD, Ulloa O. Hydrography shapes amoA containing thaumarcheota in the coastal waters off central chile[J]. Environ Microbiol Rep, 2017, 9(6):717-728. [59] Hiroya S MF. Comparison of 16S rRNA, ammonia monooxygenase subunit A and hydroxylamine oxidoreductase gene, in chemolithotrophic ammonia-oxidizing bacteria[J]. Journal of General & Applied Microbiology, 2002, 48:173-176. [60] Moran MA, Buchan A, González JM, et al. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment[J]Nature, 2004, 432:910-913. [61] Poret-Peterson AT, Graham JE, Gulledge J, et al. Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath[J]. ISME J, 2008, 2:1213-1220. [62] Rani S, Koh HW, Rhee SK, et al. Detection and diversity of the nitrite oxidoreductase alpha subunit(nxrA)gene of nitrospina in marine sediments[J]. Microb Ecol, 2017, 73:111-122. [63] Shoun H, Fushinobu S, Jiang L, et al. Fungal denitrification and nitric oxide reductase cytochrome P450nor[J]. Philos Trans R Soc Lond B Biol Sci, 2012, 367:1186-1194. [64] Reyna L, Wunderlin DA, Genti-Raimondi S. Identification and quantification of a novel nitrate-reducing community in sediments of suquia river basin along a nitrate gradient[J]. Environ Pollut, 2010, 158:1608-1614. [65] Zumft WG. Cell biology and molecular basis of denitrification[J]. Microbiology & Molecular Biology Reviews, 1997, 61:533-616. [66] Philippot L, Kuffner M, et al. Genetic structure and activity of the nitrate-reducers community in the rhizosphere of different cultivars of maize[J]. Plant and Soil, 2006, 287:177-186. [67] Deiglmayr K, Philippot L, Kandeler E. Functional stability of the nitrate-reducing community in grassland soils towards high nitrate supply[J]. Soil Biology and Biochemistry, 2006, 38:2980-2984. [68] Bulc TG, Klemenčič AK, Razinger J. Vegetated ditches for treatment of surface water with highly fluctuating water regime. [J]Water Science & Technology, 2011, 63:2353. [69] Glockner AB, Jüngst A, Zumft WG. Copper-containing nitrite reductase from pseudomonas aureofaciens is functional in a mutationally cytochrome cd1-free background(Nirs-)of Pseudomonas stutzeri[J]. Archives of Microbiology, 1993, 160:18-26. [70] Yang JK, Cheng ZB, Li J, et al. Community composition of nirS-type denitrifier in a shallow eutrophic lake. [J]Microb Ecol, 2013, 66:796-805. [71] Lee JA, Francis CA. Spatiotemporal characterization of San Francisco bay denitrifying communities:A comparison of nirK and nirS diversity and abundance[J]. Microb Ecol, 2017, 73:271-284. [72] Zhou S, Huang T, et al. Illumina Miseq sequencing reveals the community composition of Nirs-Type and Nirk-Type denitrifiers in zhoucun Reservoir - a large shallow eutrophic reservoir in northern China[J]. RSC Adv, 2016, 6:91517-91528. [73] Fagerstone KD, Quinn JC, Bradley TH, et al. Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation[J]. Environ Sci Technol, 2011, 45:9449-9456. [74] Kearns PJ, Angell JH, Feinman SG, et al. Long-term nutrient addition differentially alters community composition and diversity of genes that control nitrous oxide flux from salt marsh sediments[J]. Estuarine, Coastal and Shelf Science, 2015, 154:39-47. [75] Orellana LH, Rodriguez-R LM, Higgins S, et al. Detecting nitrous oxide reductase(Nosz)genes in soil metagenomes:method development and implications for the nitrogen cycle[J]. Mbio, 2014, 5(3):e01193-14. [76] Sanford RA, Wagner DD, Wu Q, et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils[J]. Proc Natl Acad Sci USA, 2012, 109:19709-19714. [77] Jones CM, Graf DR, Bru D, et al. The unaccounted yet abundant nitrous oxide-reducing microbial community:A potential nitrous oxide sink[J]. ISME J, 2013, 7:417-426. [78] Wyman M, Hodgson S, Bird C. Denitrifying alphaproteobacteria from the arabian sea that express nosz, the gene encoding nitrous oxide reductase, in oxic and suboxic waters[J]. Appl Environ Microbiol, 2013, 79:2670-81. [79] Kartal B, Maalcke WJ, de Almeida NM, et al. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature, 2011, 479:127-30. [80] Dang H, Zhou H, Zhang Z, et al. Molecular detection of candidatus scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai sea, China[J]. PLoS One, 2013, 8:e61330. [81] Sun W, Xia C, Xu M, et al. Diversity and distribution of planktonic anaerobic ammonium-oxidizing bacteria in the Dongjiang river, China[J]. Microbiol Res, 2014, 169:897-906. [82] Harhangi HR, Le Roy M, van Alen T, et al. Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria[J]. Appl Environ Microbiol, 2012, 78:752-758. [83] Shen LD, Wu HS, Gao ZQ, et al. Evidence for anaerobic ammonium oxidation process in freshwater sediments of aquaculture ponds[J]. Environmental Science and Pollution Research, 2016, 23:1344. [84] Naeher S, Huguet A, Roose-Amsaleg CL, et al. Molecular and geochemical constraints on anaerobic ammonium oxidation(anammox)in a riparian zone of the Seine Estuary(France)[J]. Biogeochemistry, 2015, 123:237-250. [85] Russ L, Kartal B, et al. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin[J]. Front Microbiol, 2013, 4:219. [86] Bale NJ, Villanueva L, Fan H, et al. Occurrence and activity of anammox bacteria in surface sediments of the southern north sea[J]. FEMS Microbiol Ecol, 2014, 89:99-110. [87] Gardner WS, McCarthy MJ, An S, et al. Nitrogen fixation and dissimilatory nitrate reduction to ammonium(DNRA)support nitrogen dynamics in Texas estuaries[J]. Limnology & Oceanography, 2006, 51:558-568. [88] Lam P, Lavik G, Jensen MM, et al. Revising the nitrogen cycle in the peruvian oxygen minimum zone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:4752-4757. [89] Jiang X, Dang H, Jiao N. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments[J]. PLoS One, 2015, 10:e0117473. [90] Rubio LM, Herrero A, Flores E. A cyanobacterial narB gene encodes a ferredoxin-dependent nitrate reductase[J]. Plant Molecular Biology, 1996, 30:845-850. [91] Feng WW, Liu JF, Gu JD, et al. Nitrate-reducing community in production water of three oil reservoirs and their responses to different carbon sources revealed by nitrate-reductase encoding gene(napA)[J]. International Biodeterioration & Biodegradation, 2011, 65:1081-1086. [92] Paerl RW, Johnson KS, Welsh RM, et al. Differential distributions of synechococcus subgroups across the california current system[J]. Front Microbiol, 2011, 2:59. [93] Paerl RW, Turk KA, Beinart RA, et al. Seasonal change in the abundance of Synechococcus and multiple distinct phylotypes in Monterey Bay determined by rbcl and narB quantitative PCR. [J]Environ Microbiol, 2012, 14:580-593. [94] Buxens M, Llama MJ, Serra JL. Effect of the inorganic nitrogen source in the expression of nitrite reductase(Nira)in Bp-1. [J]Advances in Microbiology, 2014, 4(15):1044-1056. [95] Frias JE, Flores E. Induction of the nitrate assimilation nirA operon and protein-protein interactions in the maturation of nitrate and nitrite reductases in the cyanobacterium Anabaena sp. strain PCC 7120. [J]J Bacteriol, 2015, 197:2442-2452. [96] Suzuki I, Horie N, Sugiyama T, Omata T. Identification and characterization of two nitrogen-regulated genes of the cyanobacterium Synechococcus sp. strain PCC7942 required for maximum efficiency of nitrogen assimilation. [J]Journal of Bacteriology, 1995, 177:290-296. [97] Frias JE, Flores E. Negative regulation of expression of the nitrate assimilation nirA operon in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. [J]J Bacteriol, 2010, 192:2769-2778. [98] Alcantara-Hernandez RJ, Valenzuela-Encinas C, Zavala-Diaz de la Serna FJ, et al. Haloarchaeal assimilatory nitrate-reducing communities from a saline alkaline soil[J]. FEMS Microbiol Lett, 2009, 298:56-66. [99] Boucher DJ, Adler B, Boyce JD. The pasteurella multocida nrfE gene is upregulated during infection and is essential for nitrite reduction but not for virulence[J]. J Bacteriol, 2005, 187:2278-2285. [100] Song B, Lisa JA, Tobias CR. Linking DNRA community structure and activity in a shallow lagoonal estuarine system[J]. Front Microbiol, 2014, 5:460. [101] Zhang X, Liu W, Schloter M, et al. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes[J]. PLoS One, 2013, 8:e76500. [102] Mobley HL, Island MD, et al. Molecular biology of microbial ure-ases[J]. Microbiological Reviews, 1995, 59(3):451-480. [103] Zhao SG, Wang JQ, Bu DP, et al. Biochemistry and molecular biology of bacterial ureases[J]. Microbiology China, 2008, 35:1146-1152. [104] Berges JA, Contents MM. Enzymes and N cycling[J]. Nitrogen in the Marine Environment, 2008. [105] Bolster DMWG. Glossary of terms used in bioinorganic chemistry(Iupac Recommendations 1997)[J]. Pure & Applied Chemistry, 1997, 69:1251-1304. [106] Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440:918-921. [107] Schmittgen TD. High-throughput real-time PCR[J]. Methods in Molecular Biology, 2008, 429:89. [108] Wei ZY, Jin DC, Deng Y. Bioinformatics tools and applications in the study of environmental microbial metagenomics[J]. Microbiology China, 2015, 42(5):890-901. |
[1] | LU Zhao-xiang, WANG Xi-ran, LIAN Xin-lei, LIAO Xiao-ping, LIU Ya-hong, SUN Jian. Advances in the Discovery of Novel Antibiotic-resistant Genes Based on Functional Metagenomics [J]. Biotechnology Bulletin, 2022, 38(9): 17-27. |
[2] | CHEN Yi-dan, ZHANG Yu, YANG Jie, ZHANG Qin, JIANG Li. Exploration of Key Functional Genes Affecting Milk Production Traits in Dairy Cattle Based on RNA-seq [J]. Biotechnology Bulletin, 2020, 36(9): 244-252. |
[3] | WANG Pan-pan, YANG Ye, LIU Di-qiu, CUI Xiu-ming, LIU Yuan. Application of Metagenomics in Plant Diseases Research [J]. Biotechnology Bulletin, 2020, 36(12): 146-154. |
[4] | LI Hui ZHA, Jian-jun, SUN Qing-ye. Effects of Acid Mine Drainage on the Abundance of Functional Genes Involved in Nitrogen Cycle in Soil Profiles [J]. Biotechnology Bulletin, 2019, 35(9): 249-256. |
[5] | ZHU Rong-gui, GUAN Tong-wei, JIANG Xiu-juan. Isolation of Rare Actinobacteria in 5 Ecodistricts of Tarim Basin and Distribution of the Genes Synthesizing Antibiotics [J]. Biotechnology Bulletin, 2018, 34(9): 230-236. |
[6] | WANG Ye, JIA Zhen-hua, SONG Shui-shan. Research Advances on Integrating Metagenomics and Synthetic Biology in Discovering Novel Biocatalysts [J]. Biotechnology Bulletin, 2018, 34(8): 35-42. |
[7] | LI Pei-han, LI Peng, SONG Hong-bin. Application of Metagenomics in Prevention and Control of Infectious Diseases [J]. Biotechnology Bulletin, 2018, 34(3): 43-52. |
[8] | YAO Xue, LIU Wen-li, PEI Guang-qian, TONG Yi-gang, LUO Ya-ping. Optimization of Method for Analyzing Microbial Community on Human Skin by Targeted Sequencing of Metagenomics [J]. Biotechnology Bulletin, 2016, 32(11): 137-143. |
[9] | Liu Jiemeng, Qi Ji. Progress in the Study of Environmental Microbes by Metagenomic Methods [J]. Biotechnology Bulletin, 2015, 31(11): 51-59. |
[10] | Liu Yuexing, Ma Hongyu, Ma Chunyan, Jiang Wei, Li Shujuan, Ma Lingbo,. Research Progress of Functional Genes Related with Important Economic Traits for Aquatic Animals [J]. Biotechnology Bulletin, 2014, 0(2): 30-40. |
[11] | Xu Hao, Luo Xi, Li Yun, Xue Yang, Ye Qin. Applications of Environmental DNA Approaches to Ecological Researches [J]. Biotechnology Bulletin, 2014, 0(10): 49-55. |
[12] | Liu Xinxing, Yun Hui, Xie Jianping, Huo Zhuanzhuan, Wu Haiyan, Yang Yingjie. Research Progress of Magnetosome Formation Genes and Proteins [J]. Biotechnology Bulletin, 2013, 0(8): 28-35. |
[13] | Ma Shu, Liu Huhu, Tian Yun, Lu Xiangyang . Advances of Metatranscriptomics Technology [J]. Biotechnology Bulletin, 2012, 0(12): 46-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||