[1] Duan K, Sun G, Zhang Y, et al. Impact of air pollution induced climate change on water availability and ecosystem productivity in the conterminous United States[J]. Climatic Change, 2017, 140 (2):259-272. [2] Man L, Xiang D, Wang L, et al. Stress-responsive gene RsICE1 from Raphanus sativus increases cold tolerance in rice[J]. Protoplasma, 2017, 254(2):945-956. [3] Ye Y, Ding Y, Jiang Q, Wang F, et al. The role of receptor-like protein kinases(RLKs)in abiotic stress response in plants[J]. Plant Cell Reports, 2017, 36(2):235-242. [4] Forni C, Duca D, Glick BR. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria[J]. Plant and Soil, 2017, 410(1-2):335-356 [5] Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana[J]. J Biol Chem, 2004, 279(40):41758-41766. [6] Kobayashi Y, Yamamoto S, Minami H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid[J]. The Plant Cell, 2004, 16(5):1163-1177 [7] Park SY, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930):1068-1071. [8] Santiago J, Dupeux F, Betz K, et al. Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs[J]. Plant Sci, 2012, 182:3-11. [9] Wang P, Xue L, Batelli G, et al. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action[J]. Proc Natl Acad Sci USA, 2013, 110 (27):11205-11210. [10] Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants[J]. Physiol Plant, 2013, 147(1):15-27. [11] Yoshida T, Fujita Y, et al. Four Arabidopsis AREB/ABF transcrip-tion factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress[J]. Plant Cell Environ, 2015, 38(1):35-49. [12] Miura K, Jin JB, Lee J, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. The Plant Cell, 2007, 19(4):1403-1414. [13] Belin C, De Franco PO, Bourbousse C, et al. Identification of features regulating OST1 kinase activity and OST1 function in guard cells[J]. Plant Physiology, 2006, 141(4):1316-1327. [14] 张洪映, 贾宏昉, 张松涛, 等. 烟草NtSnRK2. 1基因的克隆及其在非生物胁迫条件下的表达[J]. 中国烟草学报, 2014, 20(4):94-100. [15] Yoshida R, Hobo T, Ichimura K, et al. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis[J]. Plant Cell Physiol, 2002, 43(12):1473-1483. [16] Kulik A, Wawer I, Krzywińska E, et al. SnRK2 protein kinases—key regulators of plant response to abiotic stresses[J]. OMICS, 2011, 15(12):859-872. [17] Yoshida R, Umezawa T, Mizoguchi T, et al. The regulatory domain of SRK2E/OST1/SnRK2. 6 interacts with ABI1 and integrates abscisic acid(ABA)and osmotic stress signals controlling stomatal closure in Arabidopsis, J Biol Chem, 2006, 281(8):5310-5318. [18] 王永波, 高世庆, 唐益苗, 等. 植物蔗糖非发酵-1相关蛋白激酶家族研究进展[J]. 生物技术通报, 2011(11):7-18. |