Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (10): 1-10.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0167
• Orginal Article • Next Articles
TAN Yu-rong, WANG Dan, GAO Xuan, LIU Jin-ping
Received:
2018-02-26
Online:
2018-10-26
Published:
2018-11-07
TAN Yu-rong, WANG Dan, GAO Xuan, LIU Jin-ping. Research Advance on Plant Long Noncoding RNAs[J]. Biotechnology Bulletin, 2018, 34(10): 1-10.
[1] Pandey RR, Kanduri C.Transcriptional and posttranscriptional programming by long noncoding RNAs[M]//Ugarković Ð(ed.)Long Non-Coding RNAs, Progress in Molecular and Subcellular Biology 51. Heidelberg:Springer-Verlag, 2011:1-27. [2] Djebali S, Davis CA, Merkel A, et al.Landscape of transcription in human cells[J]. Nature, 2012, 489(7414):101-108. [3] Encode Project Consortium.An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414):57-74. [4] Vickers KC, Roteta LA, Hucheson-Dilks H, et al.Mining diverse small RNA species in the deep transcriptome[J]. Trends Biochem Sci, 2015, 40(1):4-7. [5] D’Ario M, Griffiths-Jones S, Kim M. Small RNAs:Big impact on plant development[J]. Trends Plant Sci, 2017, 22(12):1056-1068. [6] Yu Y, Jia T, Chen X.The ‘how’ and ‘where’ of plant microRNAs[J]. New Phytol, 2017, 216(4):1002-1017. [7] Liu J, Wang H, Chua NH.Long noncoding RNA transcriptome of plants[J]. Plant Biotechnol J, 2015, 13(3):319-328. [8] Ariel F, Romero-Barrios N, Jégu T, et al.Battles and hijacks:non-coding transcription in plants[J]. Trends Plant Sci, 2015, 20(6):362-371. [9] Rymarquis LA, Kastenmayer JP, Huttenhofer AG, et al.Diamonds in the rough:mRNA-like non-coding RNAs[J]. Trends Plant Sci, 2008, 13:329-334. [10] Jouannet V, Crespi M.Long nonprotein-coding RNAs in plants[J]. Prog Mol Subcell Biol, 2011, 51:179-200. [11] Yamada M.Functions of long intergenic non-coding(linc)RNAs in plants[J]. J Plant Res, 2017, 130(1):67-73. [12] St Laurent G, Wahlestedt C, Kapranov P.The Landscape of long noncoding RNA classification[J]. Trends Genet, 2015, 31(5):239-251. [13] Ulitsky I.Evolution to the rescue:using comparative genomics to understand long non-coding RNAs[J]. Nat Rev Genet, 2016, 17(10):601-614. [14] Sanbonmatsu KY.Towards structural classification of long non-coding RNAs[J]. Biochim Biophys Acta, 2016, 1859(1):41-45. [15] Liu TT, Zhu D, Chen W, et al.A global identification and analysis of small nucleolar RNAs and possible intermediate-sized non-coding RNAs in Oryza sativa[J]. Mol Plant, 2013, 6:830-846. [16] Wang Y, Wang X, Deng W, et al.Genomic features and regulatory roles of intermediate-sized non-coding RNAs in Arabidopsis[J]. Mol Plant, 2014, 7:514-527. [17] Kashi K, Henderson L, Bonetti A, et al.Discovery and functional analysis of lncRNAs:Methodologies to investigate an uncharacterized transcriptome[J]. Biochim Biophys Acta. 2016, 1859(1):3-15. [18] Ma H, Hao Y, Dong X, et al.Molecular mechanisms and function prediction of long noncoding RNA[J]. Scientific World Journal, 2012, 2012:541786. [19] Ulitsky I, Bartel DP.LincRNAs:genomics, evolution, and mechanisms[J]. Cell, 2013, 154:26-46. [20] Adiconis X, Borges-Rivera D, Satija R, et al.Comparative analysis of RNA sequencing methods for degraded or low-input samples[J]. Nat Methods, 2013, 10(7):623-629. [21] Mattick JS.The genetic signatures of noncoding RNAs[J]. PLoS Genet, 2009, 5(4):e1000459. [22] Fu XD.Non-coding RNA:a new frontier in regulatory biology[J]. Natl Sci Rev, 2014, 1(2):190-204. [23] Iwakiri J, Hamada M, Asai K.Bioinformatics tools for lncRNA research[J]. Biochim Biophys Acta, 2016, 1859(1):23-30. [24] Zhang Y, Tao Y, Liao Q.Long noncoding RNA:a crosslink in biological regulatory network[J]. Brief Bioinform, 2017,(5):930-945. [25] Gomes AQ, Nolasco S, Soares H.Non-coding RNAs:multi-tasking molecules in the cell[J]. Int J Mol Sci, 2013, 14(8):16010-16039. [26] Wu HJ, Wang ZM, Wang M, et al.Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants[J]. Plant Physiol, 2013, 161:1875-1884. [27] Nakagawa S, Kageyama Y.Nuclear lncRNAs as epigenetic regulators-beyond skepticism[J]. Biochim Biophys Acta, 2014, 1839(3):215-222. [28] Shafik A, Schumann U, Evers M, et al.The emerging epitranscriptomics of long noncoding RNAs[J]. Biochim Biophys Acta, 2016, 1859(1):59-70. [29] Nachtergaele S, He C.The emerging biology of RNA post-transcriptional modifications[J]. RNA Biol, 2017, 14(2):156-163. [30] Betancur JG.Pervasive lncRNA binding by epigenetic modifying complexes--The challenges ahead[J]. Biochim Biophys Acta, 2016, 1859(1):93-101. [31] Lipshitz HD, Peattie DA, Hogness DS.Novel transcripts from the Ultrabithorax domain of the bithorax complex[J]. Gene Dev, 1987, 1:307-322. [32] Brockdorff N, Ashworth A, Kay GF, et al.Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome[J]. Nature, 1991, 351:329-331. [33] Brown CJ, Ballabio A, Rupert JL, et al.A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome[J]. Nature, 1991, 349:38-44. [34] Ben Amor B, Wirth S, Merchan F, et al.Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses[J]. Genome Res, 2009, 19:57-69. [35] Matsui A, Ishida J, Morosawa T, et al.Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array[J]. Plant Cell Physiol, 2008, 49:1135-1149. [36] Okamoto M, Tatematsu K, Matsui A, et al.Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays[J]. Plant J, 2010, 62:39-51. [37] Wang H, Chung PJ, Liu J, et al.Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis[J]. Genome Res, 2014, 24:444-453. [38] MacIntosh GC, Wilkerson C, Green PJ. Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs[J]. Plant Physiol, 2001, 127:765-776. [39] Li S, Yamada M, Han X, et al.High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation[J]. Dev Cell, 2016, 39:508-522. [40] Liu J, Jung C, Xu J, et al.Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis[J]. Plant Cell, 2012, 24:4333-4345. [41] Zhang YC, Liao JY, Li ZY, et al.Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice[J]. Genome Biol, 2014, 15:512. [42] Lu T, Zhu C, Lu G, et al.Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice[J]. BMC Genom, 2012, 13:721. [43] Xin M, Wang Y, Yao Y, et al.Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing[J]. BMC Plant Biol, 2011, 11:61. [44] Cagirici HB, Alptekin B, Budak H.RNA Sequencing and Co-expressed long non-coding RNA in modern and wild wheats[J]. Sci Rep, 2017, 7(1):10670. [45] Li L, Eichten SR, Shimizu R, et al.Genome-wide discovery and characterization of maize long non-coding RNAs[J]. Genome Biol, 2014, 15:R40. [46] Boerner S, McGinnis KM. Computational identification and functional predictions of long noncoding RNA in Zea mays[J]. PLoS One, 2012, 7:e43047. [47] Qi X, Xie S, Liu Y, et al.Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing[J]. Plant Mol Biol, 2013, 83:459-473. [48] Lu X, Chen X, Mu M, et al.Genome-wide analysis of long noncoding RNAs and their responses to drought stress in cotton(Gossypium hirsutum L.)[J]. PLoS One, 2016, 11(6):e0156723. [49] Zou C, Wang Q, Lu C, et al.Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton(Gossypium arboreum)[J]. Sci China Life Sci, 2016, 59(2):164-171. [50] Wen J, Parker BJ, Weiller GF.In silico identification and characterization of mRNA-like noncoding transcripts in Medicago truncatula[J]. In Silico Biol, 2007, 7:485-505. [51] Wang L, Zhao S, Gu C, et al.Deep RNA-Seq uncovers the peach transcriptome landscape[J]. Plant Mol Biol, 2013, 83:365-377. [52] Chen J, Quan M, Zhang D.Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq[J]. Planta, 2015, 241:125-143. [53] Shuai P, Liang D, Tang S, et al.Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa[J]. J Exp Bot, 2014, 65:4975-4983. [54] Song Y, Ci D, Tian M, et al.Stable methylation of a non-coding RNA gene regulates gene expression in response to abiotic stress in Populus simonii[J]. J Exp Bot, 2016, 67(5):1477-1492. [55] Tang W, Zheng Y, Dong J, et al.Comprehensive transcriptome profiling reveals long noncoding RNA expression and alternative splicing regulation during fruit development and ripening in kiwifruit(Actinidia chinensis)[J]. Front Plant Sci, 2016, 7:335. [56] Song X, Liu G, Huang Z, et al.Temperature expression patterns of genes and their coexpression with LncRNAs revealed by RNA-Seq in non-heading Chinese cabbage[J]. BMC Genomics, 2016, 17:297. [57] Hao Z, Fan C, Cheng T, et al.Genome-wide identification, characterization and evolutionary analysis of long intergenic noncoding RNAs in cucumber[J]. PLoS One, 2015, 10(3):e0121800. [58] Flórez-Zapata NM, Reyes-Valdés MH, Martínez O.Long non-coding RNAs are major contributors to transcriptome changes in sunflower meiocytes with different recombination rates[J]. BMC Genomics, 2016, 17:490. [59] Zhu Y, Chen L, Zhang C, et al.Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii[J]. BMC Genomics, 2017, 18(Suppl 1):1042. [60] Zhang G, Duan A, Zhang J, et al.Genome-wide analysis of long non-coding RNAs at the mature stage of sea buckthorn(Hippophae rhamnoides Linn)fruit[J]. Gene, 2017, 596:130-136. [61] Xu Q, Song Z, Zhu C, et al.Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change[J]. BMC Plant Biol, 2017, 17(1):42. [62] Heo JB, Sung S.Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011, 331:76-79. [63] Kim DH, Sung S.Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs[J]. Dev Cell, 2017, 40(3):302-312. [64] Csorba T, Questa JI, Sun Q, et al.Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization[J]. Proc Natl Acad Sci USA, 2014, 111:16160-16165. [65] Marquardt S, Raitskin O, Wu Z, et al.Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription[J]. Mol Cell, 2014, 54:156-165. [66] Crespi M, Jurkevitch E, Poiret M, et al.enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth[J]. EMBO J, 1994, 13:5099-5112. [67] Girard G, Roussis A, Gultyaev AP, et al.Structural motifs in the RNA encoded by the early nodulation gene enod40 of soybean[J]. Nucleic Acids Res, 2003, 31:5003-5015. [68] Rohrig H, Schmidt J, Miklashevichs E, et al.Soybean ENOD40 encodes two peptides that bind to sucrose synthase[J]. Proc Natl Acad Sci USA, 2002, 99:1915-1920. [69] Charon C, Sousa C, Crespi M, et al.Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti[J]. Plant Cell, 1999, 11:1953-1966. [70] Wan X, Hontelez J, Lillo A, et al.Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development[J]. J Exp Bot, 2007, 58:2033-2041. [71] Campalans A, Kondorosi A, Crespi M.Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula[J]. Plant Cell, 2004, 16:1047-1059. [72] Ding J, Lu Q, Ouyang Y, et al.A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proc Natl Acad Sci USA, 2012, 109(7):2654-2659. [73] Ding J, Shen J, Mao H, et al.RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice[J]. Mol Plant, 2012, 5(6):1210-1216. [74] Wang Y, Fan X, Lin F, et al.Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light[J]. Proc Natl Acad Sci USA, 2014, 111:10359-10364. [75] Chiou TJ, Aung K, Lin SI, et al.Regulation of phosphate homeostasis by MicroRNA in Arabidopsis[J]. Plant Cell, 2006, 18:412-421. [76] Franco-Zorrilla JM, Valli A, Todesco M, et al.Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nat Genet, 2007, 39:1033-1037. [77] Jabnoune M, Secco D, Lecampion C, et al.A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness[J]. Plant Cell, 2013, 25:4166-4182. [78] Schindler S, Szafranski K, Hiller M, et al.Alternative splicing at NAGNAG acceptors in Arabidopsis thaliana SR and SR-related proteincoding genes[J]. BMC Genomics, 2008, 9:159. [79] Bardou F, Ariel F, Simpson CG, et al.Long noncoding RNA modulates alternative splicing regulators in Arabidopsis[J]. Dev Cell, 2014, 30:166-176. [80] Ariel F, Jegu T, Latrasse D, et al.Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop[J]. Mol Cell, 2014, 55(3):383-396. [81] Zhang L, Wang M, Li N, et al.Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton[J]. Plant Biotechnol J, 2018, 16(6):1172-1185. [82] Cui J, Luan Y, Jiang N, et al.Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin[J]. Plant J, 2017, 89(3):577-589. [83] Zhu QH, Stephen S, Taylor J, et al.Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana[J]. New Phytol, 2014, 201(2):574-584. [84] Qin T, Zhao H, Cui P, et al.A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance[J]. Plant Physiol, 2017, 175(3):1321-1336. [85] Wang H, Chua NH, Wang XJ.Prediction of trans-antisense transcripts in Arabidopsis thaliana[J]. Genome Biol, 2006, 7(10):R92. [86] Borsani O, Zhu J, Verslues PE, et al.Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis[J]. Cell, 2005, 123(7):1279-1291. [87] Wunderlich M, Gross-Hardt R, Schöffl F.Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA[J]. Plant Mol Biol, 2014, 85(6):541-550. [88] Zubko E, Meyer P.A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation[J]. Plant J, 2007, 52:1131-1139. [89] Ron M, Alandete Saez M, et al.Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis[J]. Genes Dev, 2010, 24(10):1010-1021. [90] Held MA, Penning B, Brandt AS, et al.Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley[J]. Proc Natl Acad Sci USA, 2008, 105(51):20534-20539. [91] Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al.A pathogen-inducible endogenous siRNA in plant immunity[J]. Proc Natl Acad Sci USA, 2006, 103:18002-18007. [92] Wang H, Niu QW, Wu HW, et al.Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits[J]. Plant J, 2015, 84(2):404-416. [93] Liu R, Zhu JK.Non-coding RNAs as potent tools for crop improvement[J]. National Science Review, 2014, 1(2):186-189. |
[1] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[2] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[3] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[4] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[5] | XUE Man-de, ZHAO Feng-yue, LI Jie, JIANG Dan-hua. Advances in Histone Variants in Plant Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 1-12. |
[6] | DONG Hai-jiao, YANG Xiao-yu, MO Bei-xin, CHEN Xue-mei, CUI Jie. Research Progress in NAD+ Cap Modification at the 5' End of RNA [J]. Biotechnology Bulletin, 2022, 38(2): 245-251. |
[7] | CHEN Chen, HUANG Zhi-yang, YU Hai-yan, YUAN Hai-bin, TIAN Huai-xiang. Research Technology and Progress in Transcriptional Regulation in Prokaryotes [J]. Biotechnology Bulletin, 2022, 38(10): 54-65. |
[8] | YANG Wei, WU Xi, CHENG Jian-guo, LUO Yan, WANG Yin, YANG Ze-xiao, YAO Xue-ping. Cloning,Expression and Transcriptional Regulation of Interferon-α in Forest Musk Deer [J]. Biotechnology Bulletin, 2022, 38(1): 194-204. |
[9] | ZHENG Ye-zi, WANG Dan, PAN Mi, WANG Yan-ling, AN Li-jun. Isolation and Characterization of Two New GLABROUS1 Alleles in Arabidopsis [J]. Biotechnology Bulletin, 2021, 37(2): 15-23. |
[10] | XU Nan, XU Yu-juan, SUN Pan, ZONG Ren-jie, GUO Min-liang. Exploration of the Transcriptional Regulation of Agrobacterium tumefaciens vbp2 Promoter [J]. Biotechnology Bulletin, 2021, 37(12): 41-49. |
[11] | TANG De-ping, YAO Hui-hui, TANG Jin-zhou, MAO Ai-hong. Mutual Regulation of microRNAs and Epigenetics in Human Cancers [J]. Biotechnology Bulletin, 2020, 36(8): 194-200. |
[12] | MA Jun, XU Tong-da. Non-canonical Auxin Signaling Pathway in Plants [J]. Biotechnology Bulletin, 2020, 36(7): 15-22. |
[13] | LIU Wen-hao, WANG Rui-feng, LIU Wan-lin, XU Jie. Effects of Different Regulatory Elements and Their Combinations on Transient Expressions of Exogenous Proteinsin Nicotiana benthamiana [J]. Biotechnology Bulletin, 2020, 36(7): 62-71. |
[14] | ZHAO Lin, WANG Pu, WU Qi, SONG Rui-rui, LAN Tao, YUN Zhen-yu. Research Progress in Histone Modification of Plant Involved in the Regulation of Gene Expression Response to Abiotic Stress [J]. Biotechnology Bulletin, 2020, 36(7): 182-189. |
[15] | LI Xiao-pei, WANG Si-ning, SHI Jing-jing, GAO Zhi-min. Progress of Plant Cuticular Wax Synthesis and Its Regulatory Factor WIN/SHN [J]. Biotechnology Bulletin, 2020, 36(12): 129-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||