Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (11): 42-49.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0593
Previous Articles Next Articles
ZHANG Meng-meng1,2, CAO Li-dong1,2, WANG Ren-qing1, SUN Rui-lian2
Received:
2018-06-29
Online:
2018-11-26
Published:
2018-11-28
ZHANG Meng-meng, CAO Li-dong, WANG Ren-qing, SUN Rui-lian. Mechanism of Endophytic Bacteria Remediating Heavy Metal-Contaminated Soil[J]. Biotechnology Bulletin, 2018, 34(11): 42-49.
[1] Sheng XF, Xia JJ, Jiang CY, et al.Characterization of heavy metal-resistant endophytic bacteria from rape(Brassica napus)roots and their potential in promoting the growth and lead accumulation of rape[J]. Environmental Pollution, 2008, 156(3):1164-1170. [2] Chen B, Zhang Y, Rafiq MT, et al.Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12:Effects on plant growth and root exudates[J]. Chemosphere, 2014, 117(1):367-373. [3] Yuan M, He H, Xiao L, et al.Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27[J]. Chemosphere, 2014, 103(5):99-104. [4] Chen L, Luo SL, Li XJ, et al.Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake[J]. Soil Biology & Biochemistry, 2014, 68(1):300-308. [5] Zhang YF, He LY, Chen ZJ, et al.Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus[J]. Chemosphere, 2011, 83(1):57-62. [6] Zhang WH, He LY, Wang Q, et al.Inoculation with endophytic Bacillus megaterium 1Y31 increases Mn accumulation and induces the growth and energy metabolism-related differentially-expressed proteome in Mn hyperaccumulator hybrid pennisetum[J]. Journal of Hazardous Materials, 2015, 300:513-521. [7] VIsioli G, D’egidio S, Vamerali T, et al.Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens[J]. Chemosphere, 2014, 117(117C):538. [8] Kamran MA, Bibi S, Xu RK, et al.Phyto-extraction of chromium and influence of plant growth promoting bacteria to enhance plant growth[J]. Journal of Geochemical Exploration, 2017, 182:269-274. [9] Ma Y, Rajkumar M, Moreno A, et al.Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress[J]. Chemosphere, 2017, 185:75-85. [10] 杨波, 陈晏, 李霞, 等. 植物内生菌促进宿主氮吸收与代谢研究进展[J]. 生态学报, 2013, 33(9):2656-2664. [11] 刘劲松, 张健君, 杨淑芳, 等. 内生菌参与植物/微生物联合修复重金属污染土壤的研究进展[J]. 中国植保导刊, 2014, 34(2):27-30. [12] 王璐, 何琳燕, 盛下放. 耐铜苏丹草根内生细菌的分离筛选及其生物学特性研究[J]. 土壤, 2016, 48(1):95-101. [13] Khan AL, Waqas M, Hussain J, et al.Endophytes Aspergillus caespitosus LK12 and Phoma sp. LK13 of Moringa peregrina produce gibberellins and improve rice plant growth[J]. Journal of Plant Interactions, 2014, 9(1):731-737. [14] Todorovic B.Promotion of plant growth by bacterial ACC deaminase[J]. Critical Reviews in Plant Sciences, 2007, 26(5-6):227-242. [15] Sun LN, Zhang YF, He LY, et al.Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland[J]. Bioresour Technol, 2010, 101(2):501-509. [16] Zhang YF, He LY, Chen ZJ, et al.Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape[J]. Journal of Hazardous Materials, 2011, 186(2-3):1720. [17] Seo DJ, Nguyen DM, Song YS, et al.Induction of defense response against Rhizoctonia solani in cucumber plants by endophytic bacterium Bacillus thuringiensis GS1.[J]. Journal of Microbiology & Biotechnology, 2012, 22(3):407. [18] Afzal I, Shinwari ZK, Iqrar I.Selective isolation and characterization of agriculturally beneficial endophytic bacteria from wild hemp using canola[J]. Pakistan Journal of Botany, 2015, 47(5):1999-2008. [19] Złoch M, Thiem D, Gadzała-Kopciuch R, et al.Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+[J]. Chemosphere, 2016, 156:312-325. [20] Rajkumar M, Ae N, Prasad MNV, et al.Potential of siderophore-producing bacteria for improving heavy metal phytoextraction[J]. Trends in Biotechnology, 2010, 28(3):142-149. [21] 邓平香, 张馨, 龙新宪. 产酸内生菌荧光假单胞菌R1对东南景天生长和吸收、积累土壤中重金属锌镉的影响[J]. 环境工程学报, 2016, 10(9):5245-5254. [22] Román-Ponce B, Ramos-Garza J, Arroyo-Herrera I, et al.Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production[J]. Archives of Microbiology, 2018, 200(6):883-895. [23] Shin MN, Shim J, You Y, et al. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma[J]. Journal of Hazardous Materials, 2012, 199-200(2):314. [24] 赵希俊, 宋萍, 封磊, 等. 一株具有耐铝促生作用的茶树内生细菌的分离鉴定[J]. 江西农业大学学报, 2014, 36(2):407-412. [25] Luo S, Wan Y, Xiao X, et al.Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation.[J]. Applied Microbiology & Biotechnology, 2011, 89(5):1637-1644. [26] Dong DT, Yamaguchi N, Makino T, et al.Effect of soil microorganisms on arsenite oxidation in paddy soils under oxic conditions[J]. Soil Science & Plant Nutrition, 2014, 60(3):377-383. [27] Ghosh P, Rathinasabapathi B, Teplitski M, et al.Bacterial ability in AsIII oxidation and AsV reduction:Relation to arsenic tolerance, P uptake, and siderophore production[J]. Chemosphere, 2015, 134(13):1. [28] Fazi S, Crognale S, Casentini B, et al.The arsenite oxidation potential of native microbial communities from arsenic-rich freshwaters[J]. Microbial Ecology, 2016, 72(1):25-35. [29] Wang L, Lin H, Dong Y, et al.Isolation of vanadium-resistance endophytic bacterium PRE01 from Pteris vittata in stone coal smelting district and characterization for potential use in phytoremediation[J]. Journal of Hazardous Materials, 2017, 341:1. [30] Wang L, Lin H, Dong Y, et al.Isolation of vanadium-resistance endophytic bacterium PRE01 from Pteris vittata in stone coal smelting district and characterization for potential use in phytoremediation[J]. Journal of Hazardous Materials, 2017, 341:1-9. [31] Tiwari S, Sarangi BK, Thul ST.Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application[J]. Journal of Environmental Management, 2016, 180:359-365. [32] Gao Y, Xia J, Mao L, et al.Effect of citric acid on phytoextraction and antioxidative defense in Solanum nigrum L. as a hyperaccumu-lator under Cd and Pb combined pollution[J]. Environmental Earth Sciences, 2012, 65(7):1923-1932. [33] Khan AR, Ullah I, Khan AL, et al.Phytostabilization and physicochemical responses of korean ecotype Solanum nigrum L. to cadmium contamination[J]. Water Air & Soil Pollution, 2014, 225(10):2147. [34] Yan Z, Zhang W, Chen J, et al.Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum, by regulating metal uptake and antioxidative capacity[J]. Biologia Plantarum, 2015, 59(2):373-381. [35] Tiwari S, Sarangi BK.Comparative analysis of antioxidant response by Pteris vittata, and Vetiveria zizanioides, towards arsenic stress[J]. Ecological Engineering, 2017, 100:211-218. [36] Wan Y, Luo S, Chen J, et al.Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L.[J]. Chemosphere, 2012, 89(6):743-750. [37] He H, Ye Z, Yang D, et al.Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus[J]. Chemosphere, 2013, 90(6):1960-1965. [38] 刘莉华, 刘淑杰, 陈福明, 等. 接种内生细菌对龙葵吸收积累镉的影响[J]. 环境科学学报, 2013, 33(12):3368-3375. [39] Ma Y, Rajkumar M, Moreno A, et al.Serpentine endophytic bacterium Pseudomonas azotoformans, ASS1 accelerates phytoremediation of soil metals under drought stress[J]. Chemosphere, 2017, 185:75-85. [40] Schulz B, Boyle C.What are endophytes?[M] //Schulz BJE, Boyle CJC, Sieber TN. Microbial root endophytes. Berlin:Springer-Verlag, 2006:1-13. [41] Hallmann J, Quadt-Hhallmann A, Mahaffee WF, et al.Bacterialendophytes in agricultural crops[J]. Can J Microbiol, 1997, 43:895-914. [42] Sturz AV, Christie BR, Nowak J.Baterial endophytes:Potential role in developing sustainable systems of crop production[J]. Critical Reviews in Plant Sciences, 2000, 19(1):1-30. [43] Bouchet V, Huot H, Goldstein R.Molecular genetic basis of ribotyping[J]. Clinical Microbiology Reviews, 2008, 21(2):262. [44] 邓平香, 郭荣荣, 余光伟, 等. 超积累和非超积累生态型东南景天茎、叶内生细菌多样性分析[J]. 微生物学通报, 2017, 44(3):533-544. [45] 何琳燕, 李娅, 刘涛, 等. 龙葵根际和内生Cd抗性细菌的筛选及其生物学特性[J]. 生态与农村环境学报, 2011, 27(6):83-88. [46] Cai M, Song G, LI Y, et al.A novel Aroclor 1242-degrading culturable endophytic bacterium isolated from tissue culture seedlings of Salix matsudana f. pendula Schneid[J]. Phytochemistry Letters, 2018, 23:66-72. [47] Nongkhlaw FMW, Joshi SR.Microscopic study on colonization and antimicrobial property of endophytic bacteria associated with ethnomedicinal plants of Meghalaya[J]. Journal of Microscopy and Ultrastructure, 2016, 5(3):132-139. [48] Passari AK, Mshral VK, Leo VV, et al.Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp[J]. Microbiological Research, 2016, 193:57-73. [49] Luo SL, Chen L, Chen JL, et al.Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation[J]. Chemosphere, 2011, 85(7):1130. [50] Románponce B, Ramosgarza J, Vásquezmurrieta MS, et al.Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants.[J]. Archives of Microbiology, 2016, 198(10):941-956. [51] Zhang X, Lin L, Zhu Z, et al.Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii.[J]. International Journal of Phytoremediation, 2013, 15(1):51. |
[1] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[2] | WANG Yu, YIN Ming-shen, YIN Xiao-yan, XI Jia-qin, YANG Jian-wei, NIU Qiu-hong. Screening, Identification and Degradation Characteristics of Nicotine-degrading Bacteria in Lasioderma serricorne [J]. Biotechnology Bulletin, 2023, 39(6): 308-315. |
[3] | LI Yi-jun, WU Chen-chen, LI Rui, WANG Zhe, HE Shan-wen, WEI Shan-jun, ZHANG Xiao-xia. Exploring Cultivation Approaches for New Endophytic Bacterial Resource in Oryza sativa [J]. Biotechnology Bulletin, 2023, 39(4): 201-211. |
[4] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[5] | ZOU Lan, WANG Qian, LI Mu-yi, YE Kun-hao, HUANG Jing. Identification, Biocontrol and Plant Growth-promoting Potential of Endophytic Bacterial Strain JY-3-1R from Aconitum carmichaelii Debx. [J]. Biotechnology Bulletin, 2023, 39(10): 246-255. |
[6] | HE Li-na, FENG Yuan, SHI Hui-min, YE Jian-ren. Screening and Identification of Endophytic Bacteria with Nematicidal Activity Against Bursaphelenchus xylophilus in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(8): 159-166. |
[7] | CHEN Hong-yan, LI Xiao-er, LI Zhong-guang. Sugar Signaling and Its Role in Plant Response to Environmental Stress [J]. Biotechnology Bulletin, 2022, 38(7): 80-89. |
[8] | LI Yi-han, YU Lang-liu, LI Chun-yan, ZHANG Meng-meng, ZHANG Xiao-qin, FANG Yun-xia, XUE Da-wei. Whole Genome Identification of Barley NRAMP and Gene Expression Analysis Under Heavy Metal Stress [J]. Biotechnology Bulletin, 2022, 38(6): 103-111. |
[9] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[10] | WANG Chun-yan, LA Gui-xiao, SU Xiu-hong, LI Meng, DONG Cheng-ming. Screening of Endophytic Bacteria from Rehmannia glutinosa at Different Stages and Analysis of Their Growth-promoting Characteristics [J]. Biotechnology Bulletin, 2022, 38(4): 242-252. |
[11] | YANG Lu, XIN Jian-pan, TIAN Ru-nan. Research Progress in the Mitigative Effects of Rhizosphere Microorganisms on Heavy Metal Stress in Plants and Their Mechanisms [J]. Biotechnology Bulletin, 2022, 38(3): 213-225. |
[12] | HU Hua-ran, DU Lei, ZHANG Rui-hao, ZHONG Qiu-yue, LIU Fa-wan, GUI Min. Research Progress in the Adaptation of Hot Pepper(Capsicum annuum L.)to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(12): 58-72. |
[13] | WANG Zhi-shan, LI Ni, WANG Wei-ping, LIU Yang. Research Progress in Endophytic Bacteria in Rice Seeds [J]. Biotechnology Bulletin, 2022, 38(1): 236-246. |
[14] | TANG Jia-cheng, LIANG Yi-min, MA Jia-si, PENG Gui-xiang, TAN Zhi-yuan. Diversity and Growth Promotion of Endophytic Bacteria Isolated from Passiflora edulia Sims [J]. Biotechnology Bulletin, 2022, 38(1): 86-97. |
[15] | ZHU Hai-yun, MA Yu, KE Yang, LI Bo. Screening and Identification of an Antagonist Against the Pathogen of Kiwifruit Canker and Its Antifungal Activity to the Phytopathogenic Fungus [J]. Biotechnology Bulletin, 2021, 37(6): 66-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||