Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (4): 60-69.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0880
Previous Articles Next Articles
FU Bei-bei1, ZHAO Jian-zhi2, LI Chen2, LIU Xin-li1, BAO Xiao-ming1, 2, HOU Jin2
Received:
2017-10-20
Online:
2018-04-20
Published:
2018-05-04
FU Bei-bei, ZHAO Jian-zhi, LI Chen, LIU Xin-li, BAO Xiao-ming, HOU Jin. Research Progresses on Monoterpene Synthesis in Saccharomyces cerevisiae[J]. Biotechnology Bulletin, 2018, 34(4): 60-69.
[1] Chandran SS, Kealey JT, Reeves CD.Microbial production of isoprenoids[J]. Process Biochemistry, 2011, 46:1703-1710. [2] Wright CW.Traditional antimalarials and the development of novel antimalarial drugs[J]. Ethnopharmacol, 2005, 100:67-71. [3] Jennewein S, Croteau R.Taxol:biosynthesis, molecular genetics, and biotechnological applications[J]. Appl Microbiol Biotechnol, 2001, 57:13-19. [4] Rao LG, Mackinnon ES, Josse RG, et al.Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women[J]. Osteoporos Int, 2007, 18:109-115. [5] Zhao J, Bao X, Li C, et al.Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 2016, 100:4561-4571. [6] de Sousa DP, Goncalves JC, Quintans-Junior L, et al. Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents[J]. Neurosci Lett, 2006, 401:231-235. [7] Brennan TC, Turner CD, Kromer JO, et al.Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2012, 109:2513-2522. [8] Sarria S, Wong B, Garcia Martin H, et al.Microbial synthesis of pinene[J]. ACS Synth Biol, 2014, 3:466-475. [9] Chaykin S, Law J, Phillips AH, et al.Phosphorylated intermediates in the synthesis of squalene[J]. Proc Natl Acad Sci USA, 1958, 44:998-1004. [10] Basson ME, Thorsness M, Rine J.Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase[J]. Proc Natl Acad Sci USA, 1986, 83:5563-5567. [11] Liang PH, Ko TP, Wang AH.Structure, mechanism and function of prenyltransferases[J]. Eur J Biochem, 2002, 269:3339-3354. [12] Westfall PJ, Pitera DJ, Lenihan JR, et al.Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proc Natl Acad Sci USA, 2012, 109:E111-118. [13] Zhao J, Li Q, Sun T, et al.Engineering central metabolic modules of Escherichia coli for improving beta-carotene production[J]. Metab Eng, 2013, 17:42-50. [14] Fischer MJ, Meyer S, Claudel P, et al.Metabolic engineering of monoterpene synthesis in yeast[J]. Biotechnol Bioeng, 2011, 108:1883-1892. [15] Herrero O, Ramon D, Orejas M.Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine[J]. Metab Eng, 2008, 10:78-86. [16] Oswald M, Fischer M, Dirninger N, et al.Monoterpenoid biosynthesis in Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2007, 7:413-421. [17] Jongedijk E, Cankar K, Ranzijn J, et al.Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae[J]. Yeast, 2015, 32:159-171. [18] Ignea C, Cvetkovic I, Loupassaki S, et al.Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids[J]. Microb Cell Fact, 2011, 10:4. [19] Jiang GZ, Yao MD, Wang Y, et al.Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae[J]. Metab Eng, 2017, 41:57-66. [20] Turner G, Gershenzon J, Nielson EE, et al.Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells[J]. Plant Physiol, 1999, 120:879-886. [21] Bohlmann J, Meyer-Gauen G, Croteau R.Plant terpenoid synthases:molecular biology and phylogenetic analysis[J]. Proc Natl Acad Sci USA, 1998, 95:4126-4133. [22] Donald KA, Hampton RY, Fritz IB.Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 1997, 63:3341-3344. [23] Keasling JD.Synthetic biology and the development of tools for metabolic engineering[J]. Metab Eng, 2012, 14:189-195. [24] Liu J, Zhang W, Du G, et al.Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae[J]. Biotechnol, 2013, 168:446-451. [25] Rico J, Pardo E, Orejas M.Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2010, 76:6449-6454. [26] Ignea C, Pontini M, Maffei ME, et al.Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase[J]. ACS Synth Biol, 2014, 3:298-306. [27] Davies BS, Wang HS, Rine J.Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae:similar activation/regulatory domains but different response mechanisms[J]. Mol Cell Biol, 2005, 25:7375-7385. [28] Kühner S, van Noort V, Betts MJ, et al. Proteome organization in a genome-reduced bacterium[J]. Science, 2009, 326:1235-1240. [29] Menon AL, Poole FL, 2nd, et al. Novel multiprotein complexes identified in the hyperthermophilic archaeon Pyrococcus furiosus by non-denaturing fractionation of the native proteome[J]. Mol Cell Proteomics, 2009, 8:735-751. [30] Deng Y, Sun M, Xu S, et al.Enhanced(S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae[J]. Appl Microbiol, 2016, 121:187-195. [31] Zhao J, Li C, Zhang Y, et al.Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae[J]. Microb Cell Fact, 2017, 16:17. [32] Marmulla R, Harder J.Microbial monoterpene transformations-a review[J]. Front Microbiol, 2014, 5:346. [33] Gamero A, Manzanares P, Querol A, et al.Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids[J]. Int J Food Microbiol, 2011, 145:92-97. [34] Steyer D, Erny C, Claudel P, et al.Genetic analysis of geraniol metabolism during fermentation[J]. Food Microbiol, 2013, 33:228-234. [35] Zhou J, Wang C, Yoon SH, et al.Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation[J]. Biotechnol, 2014, 169:42-50. [36] Liu J, Zhu Y, Du G, et al.Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress[J]. Appl Microbiol, 2013, 114:482-491. [37] Brennan TC, Kromer JO, Nielsen LK.Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane[J]. Appl Environ Microbiol, 2013, 79:3590-3600. [38] Bakkali F, Averbeck S, Averbeck D, et al.Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae[J]. Mutat Res, 2005, 585:1-13. [39] Uribe S, Ramirez J, Pena A.Effects of beta-pinene on yeast membrane functions[J]. Bacteriol, 1985, 161:1195-1200. [40] Brennan TC, Williams TC, Schulz BL, et al.Evolutionary engineering improves tolerance for replacement jet fuels in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2015, 81:3316-3325. [41] Dunlop MJ, Dossani ZY, Szmidt HL, et al.Engineering microbial biofuel tolerance and export using efflux pumps[J]. Mol Syst Biol, 2011, 7:487. [42] Wang Y, Lim L, DiGuistini S, et al. A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees[J]. New Phytol, 2013, 197:886-898. [43] Brown S, Clastre M, Courdavault V, et al.De novo production of the plant-derived alkaloid strictosidine in yeast[J]. Proc Natl Acad Sci USA, 2015, 112:3205-3210. [44] Amiri P, Shahpiri A, Asadollahi MA, et al.Metabolic engineering of Saccharomyces cerevisiae for linalool production[J]. Biotechnol Lett, 2016, 38:503-508. [45] Behrendorff JB, Vickers CE, Chrysanthopoulos P, et al.2, 2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis[J]. Microb Cell Fact, 2013, 12:76. [46] Chen Y, Daviet L, Schalk M, et al.Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J]. Metab Eng, 2013, 15:48-54. [47] Shiba Y, Paradise EM, Kirby J, et al.Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids[J]. Metab Eng, 2007, 9:160-168. [48] Parveen M, Hasan MK, Takahashi J, et al.Response of Saccharomyces cerevisiae to a monoterpene:evaluation of antifungal potential by DNA microarray analysis[J]. Antimicrob Chemother, 2004, 54:46-55. |
[1] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[2] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[3] | LIU Si-jia, WANG Hao-nan, FU Yu-chen, YAN Wen-xin, HU Zeng-hui, LENG Ping-sheng. Cloning and Functional Analysis of LiCMK Gene in Lilium ‘Siberia’ [J]. Biotechnology Bulletin, 2023, 39(3): 196-205. |
[4] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[5] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[6] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[7] | LIU Shao-hua, ZHAO Xi-sheng, YANG Qing, YANG Chang-qing, PAN Xu-hao, ZHANG Jian-hui, YANG Ai-guo, LI Yi-ting. Cloning and Functional Identification of Monoterpene Synthase Gene NtTPS2 in Tobacco [J]. Biotechnology Bulletin, 2021, 37(9): 132-141. |
[8] | CUI Xin-gang, SUN Ya-xin, CUI Xiao-jing, DENG Yan-wen, SUN En-hao, WANG Jun-fang, CUI Hong-jing. Roles of Gene TAP42 in the Cell Wall Stress Response of Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2021, 37(10): 57-62. |
[9] | GU Han-qi, SHAO Ling-zhi, LIU Ran, LIU Xiao-guang, LI Ling, LIU Qian, LI Jie, ZHANG Ya-li. Lipidomics Analysis of Saccharomyces cerevisiae with Tolerance to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2021, 37(1): 15-23. |
[10] | WU Yu, WANG Jin-hua, ZHAO Xiao. Enhanced Furfural Tolerance in Saccharomyces cerevisiae by the Overexpression of GLN1 Gene [J]. Biotechnology Bulletin, 2020, 36(8): 69-78. |
[11] | GU Han-qi, LIU Ran, SHAO Ling-zhi, XU Yan-yan, WANG Dong-yan, ZHANG Dong-mei, LI Jie. Study on the Tolerance of Saccharomyces cerevisiae Strain to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2020, 36(6): 136-142. |
[12] | LI Jia-xiu, CAI Qian-ru, WU Jie-qun. Research Progresses on the Synthetic Biology of Terpenes in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(12): 199-207. |
[13] | CAO Wen-yan, WANG Xin-ning, SHEN Yu, LI Zai-lu, BAO Xiao-ming. Research Advances on Transcription Factor Yrr1p of Pleiotropic Drug Resistance in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(11): 148-154. |
[14] | CHEN He-feng, ZHU Chao-yi, LI Shuang. Expression Vector Adaptation of Valencene-producing Saccharomyces cerevisiae and Optimization of Fermentation Carbon and Nitrogen Sources [J]. Biotechnology Bulletin, 2020, 36(1): 209-219. |
[15] | HUANG Zhen-jie, CHEN You-qiang, XUE Ting. Improving the Tolerance of Saccharomyces cerevisiae to Ethanol by the Over-expression of Inositol-3-phosphate Synthase Gene INO1 [J]. Biotechnology Bulletin, 2019, 35(3): 87-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||