Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (8): 27-34.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0033
Previous Articles Next Articles
GAO Yue1,2, GUO Xiao-peng1,2, YANG Yang3, ZHANG Miao-miao1,2,4, LI Wen-jian1,4, LU Dong1,4
Received:
2018-01-10
Online:
2018-08-26
Published:
2018-09-04
GAO Yue, GUO Xiao-peng, YANG Yang, ZHANG Miao-miao, LI Wen-jian, LU Dong. Research Progress of Biobutanol Fermentation[J]. Biotechnology Bulletin, 2018, 34(8): 27-34.
[1] Sheehan J, Camobreco V, Duffield J, et al.An overview of biodiesel and petroleum diesel life cycles[J]. Biomass Fuels, 2000, 99:3975-3981. [2] Puppàn D.Environmental evaluation of biofuels[J]. Social & Management Sciences, 2002, 10:95-116. [3] 黄格省, 李振宇, 张兰波, 等. 生物丁醇的性能优势及技术进展[J]. 石化技术与应用, 2012, 30(3):52-57. [4] Han SH, Cho DH, Kim YH, et al.Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone-butanol-ethanol fermentation[J]. Energy, 2013, 61(6):13-17. [5] Kumar M, Goyal Y, Sarkar A, Gayen K.Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks[J]. Applied Energy, 2012, 93(5):193-204. [6] Kumar M, Gayen K.Developments in biobutanol production:New insights[J]. Applied Energy, 2011, 88(6):1999-2012. [7] Srirangan K, Akawi L, Moo-Young M, et al.Towards sustainable production of clean energy carriers from biomass resources[J]. Applied Energy, 2012, 100(8):172-186. [8] Xue C, Zhao XQ, Liu CG, et al.Prospective and development of butanol as an advanced biofuel[J]. Biotechnology Advances, 2013, 31(8):1575-1584. [9] 华连滩, 王义强, 彭牡丹, 等. 生物发酵产丁醇研究进展[J]. 微生物学通报, 2014, 41(1):146-155. [10] Stoeberl M, Werkmeister R, Faulstich M, et al.Biobutanol from food wastes - fermentative production, use as biofuel and the influence on the emissions[J]. Procedia Food Science, 2011, 1:1867-1874. [11] Jang YS, Lee J, Malaviya A, et al.Butanol production from renewable biomass:Rediscovery of metabolic pathways and metabolic engineering[J]. Biotechnology Journal, 2012, 7(2):186-198. [12] Ezeji T, Blaschek H P.Fermentation of dried distillers’ grains and solubles(DDGS)hydrolysates to solvents and value-added products by solventogenic clostridia[J]. Bioresource Technology, 2008, 99(12):5232-5242. [13] 郭亭, 孙佰军, 梁达奉, 等. 不同C源对丙酮丁醇梭菌产丁醇的影响[J]. 南京工业学学报:自然科学版, 2011, 33(2):20-23. [14] Virunanon C, Ouephanit C, Burapatana V, et al.Cassava pulp enzymatic hydrolysis process as a preliminary step in bio-alcohols production from waste starchy resources[J]. Journal of Cleaner Production, 2013, 39(1):273-279. [15] Zverlov VV, Berezina O, Velikodvorskaya GA, et al.Bacterial acetone and butanol production by industrial fermentation in the Soviet Union:use of hydrolyzed agricultural waste for biorefinery[J]. Applied Microbiology & Biotechnology, 2006, 71(5):587-597. [16] Bahl H, Dürre P, Bahl H, et al.Clostridia:biotechnology and medical applications[M]// Clostridia:Biotechnology and Medical Applications, 2001:655-680. [17] Li J, Baral NR, Jha AK.Acetone-butanol-ethanol fermentation of corn stover by Clostridium species:present status and future perspectives[J]. World Journal of Microbiology & Biotechnology, 2014, 30(4):1145-1157. [18] van der wal H, Sperber BL, Houweling-Tan B, et al. Production of acetone, butanol, and ethanol from biomass of the green seaweed ULva lactuca[J]. Bioresour Technol, 2013, 128(1):431. [19] 程意峰, 李世杰, 黄金鹏, 等. 利用甜高粱秸秆汁发酵生产丁醇、丙酮[J]. 农业工程学报, 2008, (10):177-180. [20] Liu ZY, Ying Y, Li F, et al.Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran[J]. Journal of Industrial Microbiology & Biotechnology, 2010, 37(5):495. [21] Qureshi N, Liu S, Ezeji TC.Cellulosic butanol production from agricultural biomass and residues:recent advances in technology[M]// Advanced Biofuels and Bioproducts, 2012:247-265. [22] Liu ZY, Yao XQ, Zhang Q, et al.Modulation of the acetone/butanol ratio during fermentation of corn stover-derived hydrolysate by Clostridium beijerinckii NCIMB 8052[J]. Applied & Environmental Microbiology, 2017, 83(7):e03386-16. [23] Zhang WL, Liu ZY, Liu Z, et al.Butanol production from corncob residue using Clostridium beijerinckii NCIMB 8052.[J]. Letters in Applied Microbiology, 2012, 55(3):240. [24] Kudahettigenilsson RL, Helmerius J, Nilsson R T, et al.Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor[J]. Bioresource Technology, 2015, 176:71-79. [25] Jeihanipour A, Bashiri R.Perspective of Biofuels from Wastes [M]// Lignocellulose-Based Bioproducts. Springer International Publishing, 2015:37-83. [26] Peguin S, Soucaille P.Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition[J]. Applied & Environmental Microbiology, 1995, 61(1):403. [27] Matta-El-Ammouri G, Janati-Idrissi R, Junelles AM, et al. Effects of butyric and acetic acids on acetone-butanol formation by Clostridium acetobutylicum[J]. Biochimie, 1987, 69(2):109-115. [28] Hüsemann MH, Papoutsakis ET.Effects of propionate and acetate additions on solvent production in batch cultures of Clostridium acetobutylicum[J]. Applied & Environmental Microbiology, 1990, 56(5):1497. [29] Cho DH, Shin SJ, Yong HK.Effects of acetic and formic acid on ABE production by Clostridium acetobutylicum and Clostridium beijerinckii[J]. Biotechnology & Bioprocess Engineering, 2012, 17(2):270-275. [30] Ujor V, Okonkwo C, Ezeji TC.Unorthodox methods for enhancing solvent production in solventogenic Clostridium species[J]. Applied Microbiology & Biotechnology, 2016, 100(3):1089-1099. [31] Jones DT, Woods DR.Acetone-butanol fermentation revisited[J]. Microbiological Reviews, 1986, 50(4):484-524. [32] Ujor V, Agu CV, Gopalan V, et al.Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii, during butanol fermentation[J]. Applied Microbiology & Biotechnology, 2014, 98(14):6511-6521. [33] Ujor V, Agu CV, Gopalan V, et al.Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii, during acetone-butanol-ethanol(ABE)fermentation[J]. Applied Microbiology & Biotechnology, 2015, 99(8):3729-3740. [34] Almeida JRM, Röder A, Modig T, et al.NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural(HMF)and its implications on product distribution in Saccharomyces cerevisiae[J]. Applied Microbiology & Biotechnology, 2008, 78(6):939-945. [35] Sabra W, Groeger C, Sharma PN, et al.Improved n-butanol production by a non-acetone producing Clostridium pasteurianum DSMZ 525 in mixed substrate fermentation.[J]. Applied Microbiology & Biotechnology, 2014, 98(9):4267-4276. [36] Ezeji TC, Qureshi N, Blaschek HP.Acetone butanol ethanol(ABE)production from concentrated substrate:reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping[J]. Applied Microbiology & Biotechnology, 2004, 63(6):653-658. [37] Han B, Ujor V, Lai LB, et al.Use of proteomic analysis to Elucidate the role of calcium in acetone-butanol-ethanol fermentation by Clostridium beijerinckii NCIMB 8052[J]. Applied & Environmental Microbiology, 2013, 79(1):282-293. [38] Diez-Gonzalez F, Russell JB, Hunter JB.The acetate kinase of Clostridum acetobutylicum strain P262[J]. Archives of Microbiology, 1996, 166(6):418-420. [39] Winzer K, Lorenz K, Dürre P. Acetate kinase from Clostridium acetobutylicum:a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis[J]. Microbiology, 1997, 143(Pt 10)(10):3279-3286. [40] Winkler M, Esselborn J, Happe T.Molecular basis of[FeFe]-hydrogenase function:An insight into the complex interplay between protein and catalytic cofactor[J]. Biochimica et Biophysica Acta(BBA)- Bioenergetics, 2013, 1827(8-9):974-985. [41] Walter KA, Bennett GN, Papoutsakis ET.Molecular characteriza-tion of two Clostridium acetobutylicum ATCC 824 butanol dehydro-genase isozyme genes[J]. Journal of Bacteriology, 1992, 174 (22):7149-7158. [42] Wu YD, Xue C, Chen LJ, et al.Improvements of metabolites tolerance in Clostridium acetobutylicum, by micronutrient zinc supplementation[J]. Biotechnology & Bioprocess Engineering, 2016, 21(1):60-67. [43] Jurgens G, Survase S, Berezina O, et al.Butanol production from lignocellulosics[J]. Biotechnology Letters, 2012, 34(8):1415-1434. [44] Harris LM, Welker NE, Papoutsakis ET.Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824[J]. Journal of Bacteriology, 2002, 184(13):3586-3597. [45] Dürre P.Fermentative production of butanol-the academic perspe-ctive[J]. Current Opinion in Biotechnology, 2011, 22(3):331-336. [46] Schiel B, Böhringer M, Schaffer S, et al.Identification and characterization of a potential transcriptional regulator of the acetoacetate decarboxylase gene of Clostridium acetobutylicum[J]. Biospektrum, 2003, KB003:39. [47] Standfest T, Nold N, Feustel L, et al.CodY, a potential repressor of butanol formation in Clostridium acetobutylicum[J]. Biospektrum, 2009, PS21:174. [48] Nair RV, Green EM, Watson DE, et al.Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor[J]. Journal of Bacteriology, 1999, 181(1):319-330. [49] Harris LM, Blank L, Desai RP, et al.Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene[J]. Journal of Industrial Microbiology & Biotechnology, 2001, 27(5):322-328. [50] Harris LM, Desai RP, Welker NE, et al.Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant:need for new phenomenological models for solventogenesis and butanol inhibition?[J]. Biotechnology & Bioengineering, 2015, 67(1):1-11. [51] Kuit W, Minton NP, López-Contreras AM, et al.Disruption of the acetate kinase(ack)gene of Clostridium acetobutylicum results in delayed acetate production[J]. Applied Microbiology & Biotechnology, 2012, 94(3):729-741. [52] Zhang J, Yu L, Xu M, et al.Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice[J]. Applied Microbiology & Biotechnology, 2017, 101(10):4327-4337. [53] Heap JT, Kuehne SA, Ehsaan M, et al.The ClosTron:Mutagenesis in Clostridium refined and streamlined[J]. Journal of Microbiological Methods, 2010, 80(1):49-55. [54] Heap JT, Ehsaan M, Cooksley CM, et al.Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker[J]. Nucleic Acids Research, 2012, 40(8):e59. [55] Yu M, Zhang Y, Tang IC, et al.Metabolic engineering of Clostridium tyrobutyricum for n-butanol production[J]. Metabolic Engineering, 2011, 13(4):373-382. [56] Dusséaux S, Croux C, Soucaille P, et al.Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture[J]. Metabolic Engineering, 2013, 18(1):1-8. [57] Bankar SB, Jurgens G, Survase SA, et al.Genetic engineering of Clostridium acetobutylicum to enhance isopropanol-butanol-ethanol production with an integrated DNA-technology approach[J]. Renewable Energy, 2015, 83:1076-1083. [58] Jones SW, Paredes CJ, Tracy B, et al.The transcriptional program underlying the physiology of clostridial sporulation[J]. Genome Biology, 2008, 9(7):R114. [59] Hillmann F, Fischer RJ, Saintprix F, et al.PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum[J]. Molecular Microbiology, 2008, 68(4):848-860. [60] Tomas CA, Welker NE, Papoutsakis ET.Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program[J]. Applied & Environmental Microbiology, 2003, 69(8):4951. |
[1] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[2] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[3] | DUAN Yue-tong, WANG Peng-nian, ZHANG Chun-bao, LIN Chun-jing. Research Progress in Plant Flavanone-3-hydroxylase Gene [J]. Biotechnology Bulletin, 2022, 38(6): 27-33. |
[4] | MA Yan-qin, QIU Yi-bin, LI Sha, XU Hong. Research Progress in the Biosynthesis and Metabolic Engineering of Hyaluronic Acid [J]. Biotechnology Bulletin, 2022, 38(2): 252-262. |
[5] | TIAN Qing-yin, YUE Yuan-zheng, SHEN Hui-min, PAN Duo, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Regulation of Carotenoid Metabolism in Plant Ornamental Organs [J]. Biotechnology Bulletin, 2022, 38(12): 35-46. |
[6] | YUAN Kai, HE Wei, YANG Yun-li, ZHU Wei-yu, PENG Chao, AN Tai, LI Li, ZHOU Wei-qiang. Research Progress on Biosynthesis and Metabolic Regulation of Ganoderic Acids [J]. Biotechnology Bulletin, 2021, 37(8): 46-54. |
[7] | MA qin, LEI Rui-feng, Dilireba Abudourousuli, Muyesaier Aosiman, Zulihumaer Rouzi, AN Deng-di. Research Progress on the Symbiotic Metabolic of Endophytes and Plants Under Stress [J]. Biotechnology Bulletin, 2021, 37(3): 153-161. |
[8] | MENG Xiao-jian, YU Jian-dong, ZHENG Xiao-mei, ZHENG Ping, LI Zhi-min, SUN Ji-bin, YE Qin. Regulations of Small-molecules Metabolites on Hexokinase and Pyruvate Kinase in Aspergillus niger [J]. Biotechnology Bulletin, 2021, 37(12): 180-190. |
[9] | HE Hu-yi, TANG Zhou-ping, YANG Xin, FAN Wu-jing, TAN Guan-ning, LI Li-shu, HE Xin-min. Research Progress on Potato Starch Synthesis and Degradation [J]. Biotechnology Bulletin, 2019, 35(4): 101-107. |
[10] | ZHANG Zhi-min, ZHUANG Miao, JIN Feng-jie. Advances in Gene Engineering Technologies for Aspergillus oryzae [J]. Biotechnology Bulletin, 2018, 34(9): 170-176. |
[11] | LIU He, ZHU Jia-qing, ZONG Qiu-jin, LI Bing-zhi, YUAN Ying-jin. The Development of Engineered Saccharomyces cerevisiae for Biomass Conversion [J]. Biotechnology Bulletin, 2017, 33(1): 93-98. |
[12] | ZHANG Chao, WANG Yi-qiang, WANG Qi-ye, HUANG Rui-chun, MI Xiao-qin. Research Progress for Genetic Modification of Butanol-producing Clostridia [J]. Biotechnology Bulletin, 2017, 33(1): 106-113. |
[13] | MAO Jia-ling, XU Lin, YAN Ming. Construction and Characterization of the Pathways of Synthesizing Lactate in Vitro Related to NADP(H) [J]. Biotechnology Bulletin, 2016, 32(9): 260-266. |
[14] | ZHENG Chen-hua, DU Xi-ping, LI Li-jun, LI Tian-li, CAO Ying, NI Hui. The Relationship Between Characteristics of Yielding Carotenoid and Expression of Carotenogenic Genes in Phaffia rhodozyma [J]. Biotechnology Bulletin, 2016, 32(2): 123-130. |
[15] | CHEN Ke, DING Yan-ping, WANG Jian-lin, SHAO Bao-ping. Research Progress on p53-involved Metabolic Regulation [J]. Biotechnology Bulletin, 2016, 32(11): 52-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||