Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (1): 120-130.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0618
Previous Articles Next Articles
YUAN Jin-wei, CHEN Ji, CHEN Fang, LIU Wan-hong
Received:
2018-07-07
Online:
2019-01-26
Published:
2019-01-23
YUAN Jin-wei, CHEN Ji, CHEN Fang, LIU Wan-hong. The Augmentation Strategies and Mechanisms in the Phytoremediation of Heavy Metal-contaminated Soil[J]. Biotechnology Bulletin, 2019, 35(1): 120-130.
[1] Ali H, Khan E, Sajad MA.Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 2013, 91(7):869-881. [2] Duan Q, Lee J, Liu Y, et al.Distribution of heavy metal pollution in surface soil samples in China:a graphical review[J]. Bull Environ Contam Toxicol, 2016, 97(3):303-309. [3] Li Z, Ma Z, van der Kuijp TJ, et al. A review of soil heavy metal pollution from mines in China:pollution and health risk assessment[J]. Sci Total Environ, 2014, 468:843-853. [4] Wuana RA, Okieimen FE.Heavy metals in contaminated soils:a review of sources, chemistry, risks and best available strategies for remediation[J]. ISRN Ecology, 2011. doi:10.5402/2011/402647. [5] Mahar A, Wang P, Ali A, et al.Challenges and opportunities in the phytoremediation of heavy metals contaminated soils:a review[J]. Ecotoxicol Environ Safety, 2016, 126:111-121. [6] Sarma H.Metal hyperaccumulation in plants:a review focusing on phytoremediation technology[J]. Journal of Environmental Science and Technology, 2011, 4(2):118-138. [7] Weyens N, Thijs S, Popek R, et al.The role of plant-microbe interactions and their exploitation for phytoremediation of air pollutants[J]. Int J Mol Sci, 2015, 16(10):25576-25604. [8] Teng Y, Wang X, Li L, et al.Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils[J]. Frontiers in Plant Science, 2015, 6(32):1-11. [9] Yu X, Li Y, Li Y, et al.Pongamia pinnata inoculated with Bradyrhizobium Liaoningense PZHK1 shows potential for phytoremediation of mine tailings[J]. Applied Microbiol & Biotechnol, 2017, 101(4):1739-1751. [10] Chen WM, Wu CH, James EK, et al.Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica[J]. J Hazard Mater, 2008, 151(2):364-371. [11] Göhre V, Paszkowski U.Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J]. Planta, 2006, 223(6):1115-1122. [12] Meier S, Borie F, Bolan N, et al.Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7):741-775. [13] Yang Y, Liang Y, Han X, et al.The roles of arbuscular mycorrhizal fungi(AMF)in phytoremediation and tree-herb interactions in Pb contaminated soil[J]. Sci Rep, 2016, 6:20469. [14] Leung H, Ye Z, Wong M.Interactions of mycorrhizal fungi with Pteris vittata(As hyperaccumulator)in as-contaminated soils[J]. Environmental Pollution, 2006, 139(1):1-8. [15] Giasson P, Jaouich A, Cayer P, et al.Enhanced phytoremediation:a study of mycorrhizoremediation of heavy metal-contaminated soil[J]. Remediation Journal, 2006, 17(1):97-110. [16] Gupta P, Kumar V.Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium[J]. World J Microbiol Biotechnol, 2017, 33(1):9. [17] Oves M, Khan MS, Zaidi A.Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils[J]. European Journal of Soil Biology, 2013, 56:72-83. [18] Li K, Ramakrishna W.Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth[J]. J Hazard Mater, 2011, 189(1):531-539. [19] Jeong S, Moon HS, Nam K, et al.Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium(Cd)from polluted soil[J]. Chemosphere, 2012, 88(2):204-210. [20] Syranidou E, Christofilopoulos S, et al.Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte Juncus acutus[J]. Front Microbiol, 2016, 7:1016. [21] Khan AR, Ullah I, Khan AL, et al.Improvement in phytoremedia-tion potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation[J]. Environ Sci Pollut Res Int, 2015, 22(18):14032-14042. [22] Weyens N, Beckers B, Schellingen K, et al.The potential of the Ni-resistant TCE-degrading pseudomonas putida W619-TCE to reduce phytotoxicity and improve phytoremediation efficiency of poplar cuttings on a Ni-TCECo-Contamination[J]. International Journal of Phytoremediation, 2015, 17(1-6):40-48. [23] Ma Y, Rajkumar M, Zhang C, et al.Beneficial role of bacterial endophytes in heavy metal phytoremediation[J]. Journal of Environmental Management, 2016, 174:14-25. [24] Vassil AD, Kapulnik Y, Raskin I, et al.The role of EDTA in lead transport and accumulation by Indian mustard[J]. Plant Physiol, 1998, 117(2):447-453. [25] Luo J, Qi S, Gu XW, et al.An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems[J]. Ecotoxicology, 2016, 25(4):646-654. [26] Souza LA, Piotto FA, Nogueirol RC, et al.Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents[J]. Scientia Agricola, 2013, 70(4):290-295. [27] Attinti R, Barrett KR, Datta R, et al.Ethylenediaminedisuccinic acid(EDDS)enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field[J]. Environmental Pollution, 2017, 225:524-533. [28] Meers E, Ruttens A, Hopgood M, et al.Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals[J]. Chemosphere, 2005, 58(8):1011-1022. [29] Kołodyn?ska D. Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters[M]// Ning RY Expanding Issues in Desalination, inTech Publishers, 2011:339-370. [30] Wu Q, Cui Y, Li Q, et al.Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating Ligand GLDA[J]. J Hazard Mater, 2015, 283:748-754. [31] 袁江, 李晔, 许剑臣, 等. 可生物降解螯合剂 GLDA 和植物激素共同诱导植物修复重金属污染土壤研究[J]. 武汉理工大学学报, 2016, 38(2):82-86. [32] Agnello AC, Huguenot D, van Hullebusch ED, et al. Citric acid-and Tween® 80-assisted phytoremediation of a co-contaminated soil:alfalfa(Medicago sativa L.)performance and remediation potential[J]. Environ Sci Pollut Res Int, 2016, 23(9):9215-9226. [33] Sun RL, Zhou QX, Jin CX.Cadmium accumulation in relation to organic acids in Leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator[J]. Plant and Soil, 2006, 285(1-2):125-134. [34] Zaheer IE, Ali S, Rizwan M, et al.Citric acid assisted phytoremediation of copper by Brassica napus L.[J]. Ecotoxicology and Environmental Safety, 2015, 120:310-317. [35] Krämer U, Pickering IJ, Prince RC, et al.Subcellular Localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species[J]. Plant Physiol, 2000, 122(4):1343-1354. [36] Sarret G, Saumitou-Laprade P, Bert V, et al.Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri[J]. Plant Physiol, 2002, 130(4):1815-1826. [37] Sriprang R, Hayashi M, Ono H, et al.Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase[J]. Appl Environ Microbiol, 2003, 69(3):1791-1796. [38] Ike A, Sriprang R, Ono H, et al.Bioremediation of cadmium contaminated soil using symbiosis between Leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes[J]. Chemosphere, 2007, 66(9):1670-1676. [39] Ike A, Sriprang R, Ono H, et al.Promotion of metal accumulation in nodule of Astragalus sinicus by the expression of the iron-regulated transporter gene in Mesorhizobium huakuii subsp. rengei B3[J]. J Biosci Bioeng, 2008, 105(6):642-648. [40] Wu CH, Wood TK, Mulchandani A, et al.Engineering plant-microbe symbiosis for rhizoremediation of heavy metals[J]. Appl Environ Microbiol, 2006, 72(2):1129-1134. [41] Lasat MM, Baker AJ, Kochian LV.Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi[J]. Plant Physiol, 1996, 112(4):1715-1722. [42] Pence NS, Larsen PB, et al.The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerule-scens[J]. Proc Natl Acad Sci USA, 2000, 97(9):4956-4960. [43] Rodríguez-llorente ID, Lafuente A, et al. Engineering copper hyperaccumulation in plants by expressing a prokaryotic copC gene[J]. Environ Sci Technol, 2012, 46(21):12088-12097. [44] Zanella L, Fattorini L, Brunetti P, et al.Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification[J]. Planta, 2016, 243(3):605-622. [45] Guo J, Dai X, Xu W, et al.Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana[J]. Chemosphere, 2008, 72(7):1020-1026. [46] Zhu YL, Pilon-Smits EA, et al.Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance[J]. Plant Physiol, 1999, 119(1):73-80. [47] Bizily SP, Rugh Cl, Summers AO, et al.Phytoremediation of methylmercury pollution:merB expression in Arabidopsis thaliana confers resistance to organomercurials[J]. Proc Natl Acad Sci USA, 1999, 96(12):6808-6813. [48] Bizily SP, Rugh Cl, Meagher RB.Phytodetoxification of hazardous organomercurials by genetically engineered plants[J]. Nature Biotechnology, 2000, 18(2):213-217. [49] Nagata T, Kiyono M, Pan-Hou H.Engineering expression of bacterial polyphosphate kinase in tobacco for mercury remediation[J]. Appl Microbiol Biotechnol, 2006, 72(4):777-782. [50] Nozoye T, Otani M, Senoura T, et al.Overexpression of barley nicotianamine synthase 1 confers tolerance in the sweet potato to iron deficiency in calcareous soil[J]. Plant and Soil, 2017, 418(1-2):75-78. [51] Sobariu Dl, Fertu DIT, Diaconu M, et al.Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation[J]. New Biotechnology, 2017, (39):125-134. [52] Hayat R, Ali S, Amara U, et al.Soil beneficial bacteria and their role in plant growth promotion:a review[J]. Annals of Microbiology, 2010, 60(4):579-598. [53] Saha M, Sarkar S, Sarkar B, et al.Microbial siderophores and their potential applications:a review[J]. Environ Sci Pollut Res Int, 2016, 23(5):3984-3999. [54] Glick BR.Bacteria with ACC deaminase can promote plant growth and help to feed the world[J]. Microbiological Research, 2014, 169(1):30-39. [55] Li W, Wang D, Hu F, et al.Exogenous IAA treatment enhances phytoremediation of soil contaminated with phenanthrene by promoting soil enzyme activity and increasing microbial biomass[J]. Environ Sci Pollut Res Int, 2016, 23(11):10656-10664. [56] Revillas J, Rodelas B, Pozo C, et al.Production of B-group vitamins by two azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions[J]. Journal of Applied Microbiology, 2000, 89(3):486-493. [57] Cattelan A, Hartel P, Fuhrmann J.Screening for plant growth-promoting rhizobacteria to promote early soybean growth[J]. Soil Science Society of America Journal, 1999, 63(6):1670-1680. [58] Yadav S.Heavy metals toxicity in plants:an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants[J]. South African Journal of Botany, 2010, 76(2):167-179. [59] Hossain MA, Piyatida P, da Silva JAT, et al. Molecular mechanism of heavy metal toxicity and tolerance in plants:central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation[J]. Journal of Botany, 2012. doi:10.1155/2012/872875. [60] Wan Y, Luo S, Chen J, et al.Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L.[J]. Chemosphere, 2012, 89(6):743-750. [61] Di Baccio D, Galla G, Bracci T, et al.Transcriptome analyses of populus x euramericana clone I-214 Leaves exposed to excess zinc[J]. Tree Physiology, 2011, 31(12):1293-1308. [62] Srivastava S, Verma PC, Chaudhry V, et al.Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea(L.)Czern. Var. R-46[J]. J Hazard Mater, 2013, 262:1039-1047. [63] Shin M-N, Shim J, You Y, et al.Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma[J]. J Hazard Mater, 2012, 199:314-320. [64] Dimkpa CO, Svatoš A, et al.Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp.[J]. Chemosphere, 2008, 74(1):19-25. [65] Ovečka M, Takáč T.Managing heavy metal toxicity stress in plants:biological and biotechnological tools[J]. Biotechnology Advances, 2014, 32(1):73-86. [66] DalCorso G, Fasani E, Furini A. Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics[J]. Frontiers in Plant Science, 2013, 4:280. [67] Eggleton J, Thomas KV.A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events[J]. Environment International, 2004, 30(7):973-980. [68] Tagliavini M, Masia A, Quartieri M.Bulk soil pH and rhizosphere pH of peach trees in calcareous and alkaline soils as affected by the form of nitrogen fertilizers[J]. Plant and Soil, 1995, 176(2):263-271. [69] Saravanan V, Madhaiyan M, Thangaraju M.Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus[J]. Chemosphere, 2007, 66(9):1794-1798. [70] Suthar V, Memon KS, et al.EDTA-enhanced phytoremediation of contaminated calcareous soils:heavy metal bioavailability, extractability, and uptake by maize and sesbania[J]. Environ Monit Assess, 2014, 186(6):3957-3968. [71] Glińska S, Michlewska S, et al.The effect of EDTA and EDDS on lead uptake and Localization in hydroponically grown Pisum sativum L.[J]. Acta Physiol Plant, 2014, 36(2):399-408. [72] Li Y, Iqbal M, Zhang Q, et al.Two Silene vulgaris copper transporters residing in different cellular compartments confer copper hypertolerance by distinct mechanisms when expressed in Arabidopsis thaliana[J]. New Phytologist, 2017, 215(3):1102-1114. [73] Lin YF, Hassan Z, Talukdar S, et al.Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana[J]. PLoS One, 2016, 11(3):e0149750. [74] Yokosho K, Yamaji N, et al.An aluminum-inducible IREG gene is required for internal detoxification of aluminum in buckwheat[J]. Plant Cell Physiol, 2016, 57(6):1169-1178. [75] Das N, Bhattacharya S, Maiti MK.Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation[J]. Plant Physiol Biochem, 2016, 105:297-309. [76] Oomen RJ, Wu J, Lelièvre F, et al.Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens[J]. New Phytologist, 2009, 181(3):637-650. [77] Wei W, Chai T, Zhang Y, et al.The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport[J]. Molecular Biotechnology, 2009, 41(1):15-21. [78] Du ZY, Chen MX, Chen QF, et al.Expression of arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II)accumulation in Brassica juncea roots[J]. Plant, Cell & Environment, 2015, 38(1):101-117. |
[1] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[2] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[3] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
[4] | LIU Cheng-cheng, HU Xiao-fang, FENG You-jun. Antimicrobial Resistance:Biochemical Mechanisms and Countermeasures [J]. Biotechnology Bulletin, 2022, 38(9): 4-16. |
[5] | ZHANG Chan, WU You-gen, YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping. Molecular Mechanism of Terpenoids Synthesis Intermediated by Light and Jasmonates Signals [J]. Biotechnology Bulletin, 2022, 38(8): 32-40. |
[6] | CHEN Hong-yan, LI Xiao-er, LI Zhong-guang. Sugar Signaling and Its Role in Plant Response to Environmental Stress [J]. Biotechnology Bulletin, 2022, 38(7): 80-89. |
[7] | LI Yi-han, YU Lang-liu, LI Chun-yan, ZHANG Meng-meng, ZHANG Xiao-qin, FANG Yun-xia, XUE Da-wei. Whole Genome Identification of Barley NRAMP and Gene Expression Analysis Under Heavy Metal Stress [J]. Biotechnology Bulletin, 2022, 38(6): 103-111. |
[8] | YANG Lu, XIN Jian-pan, TIAN Ru-nan. Research Progress in the Mitigative Effects of Rhizosphere Microorganisms on Heavy Metal Stress in Plants and Their Mechanisms [J]. Biotechnology Bulletin, 2022, 38(3): 213-225. |
[9] | HU Hua-ran, DU Lei, ZHANG Rui-hao, ZHONG Qiu-yue, LIU Fa-wan, GUI Min. Research Progress in the Adaptation of Hot Pepper(Capsicum annuum L.)to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(12): 58-72. |
[10] | YAN Cong-wen, SU Dai-fa, DAI Qing-zhong, ZHANG Zhen-rong, TIAN Yun-xia, DONG Qiong-e, ZHOU Wen-xing, CHEN Shan-yan, TONG Jiang-yun, CUI Xiao-long. Advances in Biological Control of Strawberry Diseases [J]. Biotechnology Bulletin, 2022, 38(12): 73-87. |
[11] | LIU Hai-guang, LUO Zhen, DONG He-zhong. Research Progress on the Regulation of NO3- Uptake and Transport in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 192-201. |
[12] | HUANG Yu-xi, CHENG Shun-li, HE Ling-ling, XIAO Jin-bin, REN Qiu-he, PENG Zi-han, ZHOU Zhen, FANG Yu-mei. Study on the Reduction Characteristics of Cr(VI)by Two Species of Microorganisms [J]. Biotechnology Bulletin, 2021, 37(10): 63-71. |
[13] | YANG Zong-zheng, ZHAO Xiao-yu, LIU Dan, XU Wen-shuai, WU Zhi-guo. Bioremediation of Cr(VI)-contaminated Farmland Soil by Microbacterium sp. BD6 [J]. Biotechnology Bulletin, 2021, 37(10): 81-90. |
[14] | XIE Wei, HAO Zhi-peng, GUO Lan-ping, ZHANG Xin, ZHANG Shu-bin, WANG You-shan, CHEN Bao-dong. Research Advances in Terpenoids Synthesis and Accumulation in Plants as Influenced by Arbuscular Mycorrhizal Symbiosis [J]. Biotechnology Bulletin, 2020, 36(9): 49-63. |
[15] | GUO Wei, XUE Shuai, ZHANG Zhe-chao, DIAO Feng-wei, HU Jie, ZHANG Min, LIU Mei-chun, DING Sheng-li, JIA Bing-bing, SHI Zhong-qi. Research Progress on Bioremediation of Saline-alkali Grassland:A Review [J]. Biotechnology Bulletin, 2020, 36(7): 200-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||