Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (2): 192-197.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0632
Previous Articles Next Articles
LAI Bo-wen, LIU Bin, LIANG Yong-kang
Received:
2018-07-11
Online:
2019-02-26
Published:
2019-03-07
LAI Bo-wen, LIU Bin, LIANG Yong-kang. Research Progress on Food Fraud Using Non-targeted Metabolomics Based on High-resolution Mass Spectrometry[J]. Biotechnology Bulletin, 2019, 35(2): 192-197.
[1] Andreyeva T, Long MW, Brownell KD.The impact of food prices on consumption:asystematic review of research on the price elasticity of demand for food[J]. Am J Public Health, 2010, 100(2):216-222. [2] Spink J, Moyer DC, Park H, et al.Introducing food fraud including translation and interpretation to Russian, Korean, and Chinese languages[J]. Food Chem, 2015, 189:102-107. [3] Xin H, Stone R.Tainted milk scandal. Chinese probe unmasks high-tech adulteration with melamine[J]. Science, 2008, 322(5906):1310-1311. [4] Spink J, Moyer DC.Defining the public health threat of food fraud[J]. J. Food Sci, 2011, 76(9):R157-163. [5] Marvin HJP, Bouzembrak Y, Janssen EM, et al.A holistic approach to food safety risks:Food fraud as an example[J]. Food Res Int, 2016, 89(1):463-470. [6] Hong E, Lee SY, Jeong JY, et al.Modern analytical methods for the detection of food fraud and adulteration by food category[J]. J Sci Food Agric, 2017, 97(12):3877-3896. [7] Nicholson JK, Lindon JC, Holmes E.‘Metabonomics’:understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11):1181-1189. [8] Mezcua M, Malato O, García-Reyes JF, et al.Accurate-mass databases for comprehensive screening of pesticide residues in food by fast liquid chromatography time-of-flight mass spectrometry[J]. Anal Chem, 2009, 81(3):913-929. [9] Makarov A.Electrostatic axially harmonic orbital trapping:A high-performance technique of mass analysis[J]. Anal Chem, 2000, 72(6):1156-1162. [10] Tautenhahn R, Patti GJ, Rinehart D, et al.XCMS online:aweb-based Platform to process untargeted metabolomic data[J]. Anal Chem, 2012, 84(11):5035-5039. [11] Bolton EE, Wang Y, Thiessen PA, et al.PubChem:integrated platform of small molecules and biological activities[M]//Annual Reports in Computational Chemistry. Wheeler RA, Spellmeyer DC, eds.(Elsevier), 2008:217-241. [12] Tautenhahn R, Cho K, Uritboonthai W, et al.An accelerated workflow for untargeted metabolomics using the METLIN database[J]. Nat Biotechnol, 2012, 30(9):826-828. [13] Vaclavik L, Schreiber A, Lacina O, et al.Liquid chromatography-mass spectrometry-based metabolomics for authenticity assessment of fruit juices[J]. Metabolomics, 2012, 8(5):793-803. [14] Tengstrand E, Rosén J, Hellenäs KE, et al.A concept study on non-targeted screening for chemical contaminants in food using liquid chromatography-mass spectrometry in combination with a metabolomics approach[J]. Anal Bioanal Chem, 2013, 405(4):1237-1243. [15] Hrbek V, Vaclavik L, Elich O, et al.Authentication of milk and milk-based foods by direct analysis in real time ionization-high resolution mass spectrometry(DART-HRMS)technique:A critical assessment[J]. Food Control, 2014, 36(1):138-145. [16] Cajka T, Danhelova H, Zachariasova M, et al.Application of direct analysis in real time ionization-mass spectrometry(DART-MS)in chicken meat metabolomics aiming at the retrospective control of feed fraud[J]. Metabolomics, 2013, 9(3):545-557. [17] Hurtado-Fernández E, Pacchiarotta T, Mayboroda OA, et al.Quantitative characterization of important metabolites of avocado fruit by gas chromatography coupled to different detectors(APCI-TOF MS and FID)[J]. Food Res Int, 2014, 62:801-811. [18] Jandrić Z, Roberts D, Rathor MN, et al.Assessment of fruit juice authenticity using UPLC-QToF MS:A metabolomics approach[J]. Food Chem, 2014, 148:7-17. [19] Jandrić Z, Islam M, Singh DK, et al.Authentication of Indian citrus fruit/fruit juices by untargeted and targeted metabolomics[J]. Food Control, 2017, 72:181-188. [20] Jandrić Z, Haughey SA, Frew, RD, et al.Discrimination of honey of different floral origins by a combination of various chemical parameters[J]. Food Chem, 2015, 189:52-59. [21] Moco S, Forshed J, De Vos RCH, et al.Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography-mass spectrometry and nuclear magnetic resonance[J]. Metabolomics, 2008, 4(3):202-215. [22] MacKenzie DA, Defernez M, Dunn WB, et al. Relatedness of medically important strains of Saccharomyces cerevisiae as revealed by phylogenetics and metabolomics[J]. Yeast, 2008, 25(7):501-512. [23] Dobson G, Shepherd T, Verrall SR, et al.Phytochemical diversity in tubers of potato cultivars and landraces using a GC-MS metabolomics approach[J]. J Agric Food Chem, 2008, 56(21):10280-10291. [24] Hrbek V, Krtkova V, Rubert J, et al.Metabolomic strategies based on high-resolution mass spectrometry as a tool for recognition of GMO(MON 89788 Variety)and non-GMO soybean:a critical assessment of two complementary methods[J]. Food Anal Method, 2017, 10(11):3723-3737. [25] Mattarucchi E, Stocchero M, Moreno-Rojas JM, et al.Authentication of trappist beers by LC-MS fingerprints and multivariate data analysis[J]. J Agric Food Chem, 2010, 58(23):12089-12095. [26] Cajka T, Riddellova K, Tomaniova M, et al.Ambient mass spectrometry employing a DART ion source for metabolomic fingerprinting/profiling:a powerful tool for beer origin recognition[J]. Metabolomics, 2011, 7(4):500-508. [27] Jin S, Song C, Jia S, et al.An integrated strategy for establishment of curcuminoid profile in turmeric using two LC-MS/MS platforms[J]. J Pharm BiomedAnal, 2017, 132:93-102. [28] Arbulu M, Sampedro MC, Gómez-Caballero A, et al.Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines[J]. Anal Chim Acta, 2015, 858:32-41. [29] Capanoglu E, Beekwilder J, Boyacioglu D, et al.Changes in antioxidant and metabolite profiles duringproduction of tomato paste[J]. J Agric Food Chem, 2008, 56(3):964-973. [30] Ruiz-Aracama A, Lommen A, Huber M, et al.Application of an untargeted metabolomics approach for the identification of compounds that may be responsible for observed differential effects in chickens fed an organic and a conventional diet[J]. Food Addit & Contam:Part A, 2012, 29(3):323-332. [31] Hrbek V, Rektorisova M, Chmelarova H, et al.Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry[J]. J Food Compos & Anal, 2018, 67:19-28. |
[1] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
[2] | HAN Hua-rui, YANG Yu-lu, MEN Yi-han, HAN Shang-ling, HAN Yuan-huai, HUO Yi-qiong, HOU Si-yu. SiYABBYs Involved in Rhamnoside Biosynthesis During the Flower Development of Setaria italica, Based on Metabolomics [J]. Biotechnology Bulletin, 2023, 39(6): 189-198. |
[3] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[4] | GULJAMAL·Aisa , XING Jun, LI An, ZHANG Rui. Non-targeted Metabolomics Analysis of Benzo(α)pyrene by Microorganisms in Kefir Grains [J]. Biotechnology Bulletin, 2022, 38(5): 123-135. |
[5] | YANG Yu-ping, ZHANG Xia, WANG Chong-chong, WANG Xiao-yan. Study on Urine Metabolomics in Rats of Different Ages [J]. Biotechnology Bulletin, 2022, 38(2): 166-172. |
[6] | WU Yu-ping, ZHOU Yong, PU Juan, LI Hui, ZHANG Jin-gang, ZHU Yan-ping. Application Progress of Metabolomics in Tumor Drug Target Screening [J]. Biotechnology Bulletin, 2022, 38(1): 311-318. |
[7] | ZHANG Feng, CHEN Wei. Research Progress of Metabolomics in Plant Stress Biology [J]. Biotechnology Bulletin, 2021, 37(8): 1-11. |
[8] | TIAN He, SHUI Guang-hou. Advances in Analysis Methods of Mass Spectrometry-based Metabolomics [J]. Biotechnology Bulletin, 2021, 37(1): 24-32. |
[9] | YIN Zhi-bin, HUANG Wen-jie, WU Xin-zhou, YAN Shi-juan. Spatially Resolved Metabolomics:Progress and Challenges [J]. Biotechnology Bulletin, 2021, 37(1): 32-51. |
[10] | HUANG Xiao-dan, CHEN Meng-yu, HUANG Wen-jie, ZHANG Ming-wei, YAN Shi-juan. Progress Based on Metabolomics:Plant Polyphenols and Their Gut Health Benefit [J]. Biotechnology Bulletin, 2021, 37(1): 123-136. |
[11] | LI Rui, SUN Zu-li, YANG Xian-qing, LI Lai-hao, WEI Ya, CEN Jian-wei, WANG Jing, ZHAO Yong-qiang. Advances in the Applications of Metabolomics Technologies in Aquatic Products Quality and Safety Research [J]. Biotechnology Bulletin, 2020, 36(11): 155-163. |
[12] | LAN Qing-kuo, ZHAO Xin, SHEN Xiao-ling, WEI Jing-na, LIU Shuang, CHEN Rui, TAN Jian-xin, WANG Yong. Biosafety Assessment Technology Research for Genetically Modified Rice Based on Metabolomics [J]. Biotechnology Bulletin, 2020, 36(11): 222-229. |
[13] | JIN Yu, LI He-jian, FENG Cheng-qiang. Transcriptome-metabolomics Analysis and Its Application in Studying Drug Action Mechanism [J]. Biotechnology Bulletin, 2018, 34(12): 68-76. |
[14] | KONG De-kang, WANG Hong-qi, XU Jie, LIU Zi-li, WU Xiao-xiong. Applications of Genomics,Proteomics and Metabolomics in Microbial Degradation of PAHs [J]. Biotechnology Bulletin, 2017, 33(10): 46-51. |
[15] | FAN Xu-jia, BIAN Yan-hui, YIN Hai-song , QIAO Chang-sheng. Optimization of Sample Pretreatment Method for Metabolomics Studies of Aureobasidium pullulans Producing Polymalic Acid [J]. Biotechnology Bulletin, 2016, 32(6): 54-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||