Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (8): 186-192.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0226
Previous Articles Next Articles
WU Qin-qin, SUN Min, CHEN Yu, FU Ya-qin, ZENG Bin, HE Bin
Received:
2019-03-17
Online:
2019-08-26
Published:
2019-08-05
WU Qin-qin, SUN Min, CHEN Yu, FU Ya-qin, ZENG Bin, HE Bin. Strategies and Advances in Functional Genomics of Aspergillus oryzae[J]. Biotechnology Bulletin, 2019, 35(8): 186-192.
[1] 赵龙, 周池虹伶, 赵谋明, 等. 解淀粉芽孢杆菌SWJS22和米曲霉混合制曲酱油发酵中的应用[J]. 食品科学, 2017, 38(22):125-130. [2] 童佳, 赵国忠, 赵新建, 等. 米曲霉发酵高盐稀态酱油过程中典型挥发性风味物质的形成[J]. 中国酿造, 2017, 36(5):22-29. [3] Tang W, Ouyang C, Liu L, et al.Genome-wide identification of the fatty acid desaturases gene family in four Aspergillus species and their expression profile in Aspergillus oryzae[J]. AMB Express, 2018, 8(1):169. [4] Machida M, Asai K, Sano M, et al.Genome sequen-cing and analysis of Aspergillus oryzae[J]. Nature, 2005, 438(7071):1157-1161. [5] 张云峰, 邵磊. 根癌农杆菌电击转化条件的研究[J]. 淮阴师范学院学报:自然科学版, 2009, 8(3):243-249. [6] Zhao G, Yao Y, Qi W, et al.Draft genome sequence of Aspergillus oryzae strain 3. 042[J]. Eukaryotic Cell, 2012, 11(9):1178. [7] Lin W, Song J, Hu W, et al.Relationship between extracellular cellulase, pectinase and xylanase activity of isolated Aspergillus oryzae strains grown on Koji and the umami-tasting amino acid content of soy sauce[J]. Food Biotechnology, 2016, 30(4):278-291. [8] Umemura M, Koike H, Yamane N, et al.3 Comparative genome analysis between Aspergillus oryzae strains reveals close relationship between sites of mutation localization and regions of highly divergent genes among Aspergillus species[J]. DNA Research, 2012, 19(5):375-382. [9] Zhao G, Yao Y, Hou L, et al.Draft genome sequence of Aspergillus oryzae 100-8, an increased acid protease production strain[J]. Genome Announcements, 2014, 2(3):e00548-14. [10] Thammarongtham C, Nookaew I, Vorapreeda T, et al.Genome characterization of oleaginous Aspergillus oryzae BCC7051:A potential fungal-based platform for lipid production[J]. Current Microbiology, 2017, 75(1):57-70. [11] Zhong Y, Lu X, Xing L, et al.Genomic and transcriptomic comparison of Aspergillus oryzae strains:a case study in soy sauce koji fermentation[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(9):839-853. [12] Deng S, Pomraning KR, Bohutskyi P, et al.Draft genome sequence of Aspergillus oryzae ATCC 12892[J]. Genome Annoouncements, 2018, 6(18):e00251-18. [13] Fernandez EQ, Moyer DL, Maiyuran S, et al.Vector-initiated transitive RNA interference in the filamentous fungus Aspergillus oryzae[J]. Fungal Genet Biol, 2012, 49(4):294-301. [14] 郭继平. 米曲霉碱性蛋白酶的异源表达和定向进化以及遗传改造[D]. 哈尔滨:哈尔滨工业大学, 2008. [15] 尹燕辰. 米曲霉表达系统的构建及其在产黄青霉淀粉酶表达中的应用[D]. 广州:华南理工大学, 2014. [16] Yasuda AY, Mori A, Ishihara N, et al.Development of a highly efficient gene replacement system for an industrial strain of Aspergillus oryzae used in the production of miso, a Japanese fermented soybean paste[J]. Food Science and Technology Research, 2011, 17(2):161-166. [17] Jun-Ichi M, Katsuhiko. Multiple gene disruptions by marker recycling with highly efficient gene-targeting background(DligD)in Aspergillus oryzae[J]. Biotechnology Letters, 2008(30):1811-1817. [18] Jaewoo Y, Jun-Ichi M, katsuhiko K. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins[J]. Applied Microbiology and Biotechnology, 2010, 89(3):747-759. [19] Sun Y, Niu Y, He B, et al.A dual selection marker transformation system using Agrobacterium tumefaciens for the industrial Aspergillus oryzae 3. 042[J]Journal of Microbiology and Biotechnology, 2019, 29(2):230-234. [20] Hinnen A, Hicks JB, Fink GR.Transformation of yeast[J]. Proc Natl Academic Science USA, 1978, 75:1929-1933. [21] 刘玲玲, 王永林, 熊典广, 等. 杨树腐烂病菌(Sytospora chrysosperma)原生质体遗传转化体系的构建[J]. 微生物学通报, 2017, 44(10):2487-2497. [22] Li D, Tang Y, Lin J, et al.Methods for genetic transformation of filamen-tous fungi[J]. Microbial Cell Factories, 2017, 16(1):168. [23] Liu ZH, Frisen TL.Polyethlene glycol(PEG)-mediated transfor-mation in filamentous fungal pathogens[J]. Plant Fungal Patho-genes, 2012, 83(5):365-275. [24] 韩志双, 刘军, 郇阿梅, 等. 应用基因组改组技术选育米曲霉酸性蛋白酶高产菌株[J]. 中国调味品, 2015, 40(1):18-22. [25] 刘肖凯. 米曲霉表型相关基因的敲除及表型分析[D]. 广州:华南理工大学, 2017. [26] Dai Z, Deng S, Culley DE, et al.Agrobacterium tumefaciens-medi-ated transformation of oleaginous yeast Lipomyces species[J]. Applied Microbiology and Biotechnology, 2017, 101(15):6099-6110. [27] Bundock P, Amkeden DR, Begersbergen AGM, et al.Trans-kingdon T-DNA transfefr from Agrobacterium tumefaciens to Saccharomyces cerevisiae[J]. The EMBO Journal, 1995, 14(3):3206-3214. [28] Wang D, He D, Li G, et al.An efficient tool for random insertional mutagenesis:Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus[J]. Journal of Microbiological Methods, 2014, 98(1):114-118. [29] Rodrigo ML, Judith Z, Rizk AM, et al.Development of a transformation system for Aspergillus sojae based on the Agrobacterium tumefaciens-mediated approach[J]. BMC Microbiology, 2014, 14(1):247. [30] Nguyen K, Ho QN, Pham TH, et al.The construction and use of versatile binary vectors carrying pyrG auxotrophic marker and fluorescent reporter genes for Agrobacterium-mediated transformation of Aspergillus oryzae[J]. World Journal of Microbiology & Biotechnology, 2016, 32(12):204. [31] Nguyen K, Ho QN, Binh LT, et al.A new and efficient approach for construction of uridine/uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation[J]. World Journal of Microbiology & Biotechnology, 2017, 33(6):107. [32] 刘雪. 米曲霉原生质体的制备及pyrG缺失株的构建研究[D]. 南昌:南昌大学, 2012. [33] 陈凤. 米曲霉niaD300转化系统的构建及其RNA干扰效应研究[D]. 广州:华南理工大学, 2012. [34] Katayama T, Tanaka Y, Okabe T, et al.Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae[J]. Biotechnology Letter, 2015, 38:637-642. [35] Katayama, T, Nakamura H, Zhang, Y, et al. Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae[J]. Applied and Environmental Microbiology, 2018, 85(3):e01896-18. [36] Krijgsheld P, Bleichrodt R, Veluw GJ, et al.Development in Aspergillus[J]. Studies in Mycology, 2013, 74(74):1-29. [37] Ogawa M, Tokuoka M, Feng JJ, et al.Genetic analysis of conidiation regulatory pathways in koji-mold[J]. Fungal Genetics & Biology, 2010, 47(1):10-18. [38] Nakamura H, Kikuma T, Jin FJ, et al.AoRim15 is involved in conidial stress tolerance, conidiation and sclerotia formation in the filamentous fungus Aspergillus oryzae[J]. Journal of Bioscience & Bioengineering, 2016, 121(4):365. [39] Hatakeyma R, Nakahama T, Higuchi Y, et al.Light represses conidiation in koji Mold Aspergillus oryzae[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(8):1844-1849. [40] Liu L, Fei ZA, Osterlund T, et al.Genome-scaleanalysis of the high-efficient protein secretion system of Aspergillus oryzae[J]. BMC Systems Biology, 2014, 8(1):1-13. [41] Uchima CA, Tokuda G, Watanabe H, et al.Heterologous expression and charac-terization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2011, 89(6):1761-1771. [42] Yokota JI, Shiro D, Tanaka M, et al.Cellular responses to the expression of unstable secretory proteins in the filamentous fungus Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2017, 101(6):2437-2446. [43] Jin FJ, Watanabe T, Juvvadi PR, et al.Double disruption of the proteinase genes, tppA, and pepE, increases the production level of human lysozyme by Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2007, 76(5):1059-1068. [44] Wang S, Duan M, Liu Y, et al.Enhanced production of fructosyltr-ansferase in Aspergillus oryzae by genome shuffling[J]. Biotec-hnology Letters, 2016, 39(33):91-396. [45] 聂丽娟. 米曲霉菌次级代谢产物研究[D]. 武汉:华中科技大学, 2009. [46] Marui J, Ohashikunihiro S, Ando T, et al.Penicillin biosynthesis in ;Aspergillus oryzae and its overproduction by genetic engineering;[J]. Journal of Bioscience & Bioengineering, 2010, 110(11):;8-11. [47] Zhang YQ, Wilkinson H, Keller NP, et al.Secondary metabolite gene clusters[M]//Handbook of Industrial Mycology. New York:Marcel Dekker, 2005:355-386. [48] Li H, Ma L, Hu Z, et al.Heterologous expression of AoD9D enhances salt tolerance with increased accumulation of unsaturated fatty acid in transgenic Saccharomyces cerevisiae[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(2):231-239. [49] Knuf C, Nookaew I, et al.Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68[J]. Appl Microbiol Biotechnol, 2014, 98(8):3517-3527. |
[1] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[2] | SHI Ya-nan, WANG De-pei, WANG Yi-chuan, ZHOU Hao, XUE Xian-li. Effects of msn2 Knock-out on the Growth and Kojic Acid Production of Aspergillus oryzae [J]. Biotechnology Bulletin, 2022, 38(8): 188-197. |
[3] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
[4] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
[5] | GAO Peng-fei, XI Fei-hu, ZHANG Ze-yu, HU Kai-qiang, CHEN Kai, WEI Wen-tao, DING Jia-zhi, GU Lian-feng. Research Progress of Plant VIGS Technology and Its Application in Forestry Science [J]. Biotechnology Bulletin, 2021, 37(5): 141-153. |
[6] | ZHAO Jiang-hua, FANG Huan, ZHANG Da-wei. Research Progress in Biosynthesis of Secondary Metabolites of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(11): 141-147. |
[7] | XU Jie ,HUANG Jian-zhong, LI Li. Summary of Genomics Mining Technology and Its Research Progress in Fungi [J]. Biotechnology Bulletin, 2019, 35(11): 201-207. |
[8] | ZHANG Zhi-min, ZHUANG Miao, JIN Feng-jie. Advances in Gene Engineering Technologies for Aspergillus oryzae [J]. Biotechnology Bulletin, 2018, 34(9): 170-176. |
[9] | HAO Ze-ting, HAO Xiao-hui, YAN Jing, XIE Bing-yan, LIANG Li-qin. Research Progress on the Secondary Metabolite of Purpureocillium lilacinum [J]. Biotechnology Bulletin, 2018, 34(10): 11-17. |
[10] | LIN Hai-zhou, CHEN Zhou-qin WANG Yan GUO Jun ZHU Hong-hui DENG Ming-rong. Mining the Cryptic Bioactive Secondary Metabolites from Streptomyces vietnamensis Using a‘Tree-Removal’Strategy [J]. Biotechnology Bulletin, 2017, 33(9): 145-152. |
[11] | MA Jun-xia, ZHANG Pei-pei, WANG Shi-li, CAO Guang-xiang,. Regulatory Effects of Gene sco1135 on the Sporulation and Secondary Metabolite Synthesis of Streptomyces coelicolor M145 [J]. Biotechnology Bulletin, 2017, 33(1): 141-147. |
[12] | Pang Zhiwei, Lu Xu, Hu Jiangchun, Cheng Xiaoqi, Wang Nan, Song Yanling. Screening and Identification of a Sponge-associated Fungus HMP-F66 Inducing Oxidative Burst in Tobacco Cell Suspensions [J]. Biotechnology Bulletin, 2015, 31(7): 174-179. |
[13] | Wei Zhiwen,Sun Yong, Wang Fei. The Production of Phenolic Compounds of Inonotus obliquus by Fungal Elicitor Introducing and Its Study of Biochemical Mechanism [J]. Biotechnology Bulletin, 2014, 0(9): 136-141. |
[14] | Song Kai, Hu Jie, Lin Wenhan, Ji Yubin,. Studies on Diversity of Sponges-associated Fungi and Their Secondary Metabolites [J]. Biotechnology Bulletin, 2014, 0(4): 36-42. |
[15] | Dai Fangping, Li Shiweng. Progress on the Secondary Metabolites and Applications of Streptomyces [J]. Biotechnology Bulletin, 2014, 0(3): 30-35. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 608
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 447
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||