Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (8): 193-204.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0086
Previous Articles Next Articles
LIU Yang-er, GUO Ming-zhang, DU Ruo-xi, HE Xiao-yun, HUANG Kun-lun, XU Wen-tao
Received:
2019-01-22
Online:
2019-08-26
Published:
2019-08-05
LIU Yang-er, GUO Ming-zhang, DU Ruo-xi, HE Xiao-yun, HUANG Kun-lun, XU Wen-tao. Advances and Prospects of Synthetic Biology in Lactic Acid Bacteria[J]. Biotechnology Bulletin, 2019, 35(8): 193-204.
[1] 杨洁彬. 乳酸菌:生物学基础及应用[M]. 北京:中国轻工业出版社, 1996. [2] 肖平, 吕嘉枥. 乳酸菌的分类鉴定方法的研究进展[J]. 中国酿造, 2008(12x):8-10. [3] 凌代文, 东秀珠. 乳酸细菌分类鉴定及实验方法[M]. 北京:中国轻工业出版社, 1999. [4] 施安辉, 周波. 乳酸菌分类、生理特性及在食品酿造工业上的应用[J]. 中国调味品, 2001(11):3-8. [5] 焦兴弘. 乳酸菌在肉制品加工过程中的应用[J]. 畜牧兽医科技信息, 2008(2):1. [6] 岳春, 李霞, 潘勇, 等. 乳酸菌的功能及其在食品中的应用[J]. 现代农业科技, 2018(15):237. [7] 陈杰, 徐冲, 孙翠焕, 等. 乳酸菌在食品工业中的应用现状及发展前景[J]. 微生物学杂志, 2012, 32(3):91-94. [8] 中国食品科学技术学会秘书处. 青城论坛:直击益生菌行业发展新动态——第十二届益生菌与健康国际研讨会即将召开[J]. 食品与机械, 2017, 33(5):1-2. [9] Kawashima T, Ikari N, Kouchi T, et al.The molecular mechanism for activating IgA production by Pediococcus acidilactici K15 and the clinical impact in a randomized trial[J]. Scientific Reports, 2018, 8(1):5065. [10] Piewngam P, Zheng Y, Nguyen TH, et al.Pathogen elimination by probiotic Bacillus via signalling interference[J]. Nature, 2018, 562:532-537. [11] Leszek R, Lucyna O, Dariusz P, et al.Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression:A double-blind, randomized, placebo controlled study[J]. Psychoneuroendocrinology, 2019, 100:213-222. [12] Hobom B.Gene surgery:on the threshold of synthetic biology[J]. ;Medizinische Klinik, 1980, 75(24):834. [13] Benner SA, Sismour AM.Synthetic biology[J]. Nature Reviews Genetics, 2005, 6(6):533-543. [14] Chopra P, Kamma A.Engineering life through synthetic biology[J]. Silico Biology, 2006, 6(5):401. [15] Ye H, Fussenegger M.A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice[J]. Science, 2011, 332(6037):1565-1568. [16] Xue S, Yin J, Shao J, et al.A synthetic-biology-inspired therapeutic strategy for targeting and treating hepatogenous diabetes[J]. Molecular Therapy the Journal of the American Society of Gene Therapy, 2017, 25(2):443. [17] Yu Y, You L, Liu D, et al. Development of Synechocystis sp. PCC6803 as a phototrophic cell factory[J]. Marine Drugs, 2013, 11;(8):2894-2916. [18] Costley SC, Wallis FM.Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor[J]. Water Research, 2001, 35(15):3715. [19] Vos WMD. Systems solutions by lactic acid bacteria:from paradigms to practice[J]. Microbial Cell Factories, 2011, 10 Suppl 1(S1):S2. [20] David L, Chun LH, In YH, et al.Reprogramming probiotic Lactobacillus reuteri as a biosensor for Staphylococcus aureus derived AIP-I detection[J]. ACS Synth Biol, 2018, 7(5):1229-1237. [21] Zipfel C.A new receptor for LPS[J]. Nature Immunology, 2015, 16(4):340-341. [22] Rueda F, Cano-Garrido O, Mamat U, et al.Production of functional inclusion bodies in endotoxin-free Escherichia coli[J]. Applied Microbiology & Biotechnology, 2014, 98(22):9229-9238. [23] 巫琴, 陈磊, 王江新, 等. 应用合成生物学策略优化光合蓝细菌底盘[J]. 生物工程学报, 2013, 29(8):1086-1099. [24] Adams BL.The next generation of synthetic biology chassis:moving synthetic biology from the laboratory to the field[J]. Acs Synthetic Biology, 2016, 5(12):1328-1330. [25] 许本发. 酸奶和乳酸菌饮料加工[M]. 北京:中国轻工业出版社, 1994. [26] 王琛, 尹光辉, 余飞燕, 等. 大肠杆菌肠毒素基因突变体在乳酸菌中的表达与免疫学鉴定[J]. 中国卫生检验杂志, 2018, 28(5):513-515, 519. [27] 易庆, 王关林, 方宏筠. 乳酸杆菌基因转化质粒载体系统及其基因工程研究进展[J]. 中国微生态学杂志, 2000, 12(1):56-57. [28] 唐鸿志. 合成生物学在环境修复中的应用[J]. 生物工程学报, 2017, 33(3):506-515. [29] Rico J, Yebra MJ, Pérez-Martínez G, et al.Analysis of ldh genes in Lactobacillus casei BL23:role on lactic acid production[J]. J Ind Microbiol & Biotechnol, 2008, 35(6):579-586. [30] Russo P, Iñaki I, Mohedano ML, et al.Zebrafish gut colonization by mCherry-labelled lactic acid bacteria[J]. Appl Microbiol Biotechnol, 2015, 99(8):3479-3490. [31] Prado-Rebolledo OF, Delgado-Machuca JDJ, Macedo-Barragan RJ, et al.Evaluation of a selected lactic acid bacteria-based probiotic on Salmonella enterica serovar enteritidis colonization and intestinal permeability in broiler chickens[J]. Avian Pathology, 2016:1-17. [32] Ferain T, Hobbs JN, Richardson J, et al.Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum[J]. Journal of Bacteriology, 1996, 178(18):5431-5437. [33] Bolotin A, Wincker P, Mauger S, et al.The complete genome sequ-ence of the lactic acid bacterium[J]. Genome Research, 2001, 11(5):731-753. [34] 杜胜阳, 王斌斌, 冯佳, 等. 乳酸菌基因敲除技术的研究进展[J]. 食品与发酵工业, 2016, 42(1):244-251. [35] Leenhouts KJ, Kok J, Venema G.Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis[J]. Appl Environ Microbiol, 1989, 55(2):394-400. [36] Mills DA .Mutagenesis in the post genomics era:tools for generating insertional mutations in the lactic acid bacteria[J]. Current Opinion in Biotechnology, 2001, 12(5):503-509. [37] Van KR, Vos HR, van Swam II, et al. Functional analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci:complementation, expression, and diversity[J]. Journal of Bacteriology, 1999, 181(20):6347-6353. [38] de Ruyter PG, Kuipers OP, de Vos WM. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin[J]. Appl Environ Microbiol, 1996, 62(10):3662-3667. [39] Flickinger JL, Chassy BM .Transformation of Lactobacillus caseiby electroporation[J]. FEMS Microbiology Letters, 2010, 44(2):173-177. [40] Felipe FLD, Kleerebezem M, Vos WMD, et al.Cofactor enginee-ring:a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase[J]. Journal of Bacteriology, 1998, 180(15):3804-3808. [41] Rijnen L, Courtin P, Gripon JC, et al.Expression of a heterologous glutamate dehydrogenase gene in Lactococcus lactis highly improves the conversion of amino acids to aroma compounds[J]. Appl Environ Microbiol, 2000, 66(4):1354-1359. [42] Joutsjoki V, Luoma S, Tamminen M, et al. Recombinant Lactococcus starters as a potential source of additional peptidolytic activity in cheese ripening[J]. Journal of Applied Microbiology, 2002, 92;(6):1159. [43] Rattanachaikunsopon P, Phumkhachorn P .Glass bead transformation method for gram-positive bacteria[J]. Brazilian Journal of Microbiology, 2009, 40(4):923-926. [44] Tauer C, Heinl S, Egger E, et al.Tuning constitutive recombinant gene expression in Lactobacillus plantarum[J]. Microbial Cell Factories, 2014, 13(1):1-11. [45] Ruyter PGD, Kuipers OP, Vos WMD.Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin[J]. Appl Environ Microbiol, 1996, 62(10):3662-3667. [46] Takala T, Saris P.A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI[J]. Appl Microbiol Biotechnol, 2002, 59(4-5):467-471. [47] Agarwal P, Khatri P, Billack B, et al.Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis[J]. Pharmaceutical Research, 2014, 31(12):3404-3414. [48] Ma Y, Liu J, Hou J, et al.Oral Administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice[J]. PLoS One, 2014, 9(8):e105701. [49] 王倩, 康振, 梁泉峰, 等. 合成未来:从大肠杆菌的重构看合成生物学的发展[J]. 生命科学, 2011, 23(9):844-848. [50] 楚遵锋, 徐淑华, 王敏, 等. 乳酸杆菌基因工程载体的应用;[J]. 今日畜牧兽医, 2017(1):49-51. [51] 崔月倩, 王菁蕊, 王艳萍. 乳酸菌基因表达载体及其应用研究进展[J]. 食品科学, 2015, 36(9):224-229. [52] 贾士芳, 王荫榆. 乳杆菌电转化条件的研究[J]. 生物工程学报, 1998, 14(4):429-433. [53] Rattanachaikunsopon P, Phumkhachorn P.Glass bead-based transformation method for lactic acid bacteria[J]. Scienceasia, 2009, 35(3):234-241. [54] Anderson DG, Mckay LL.In vivo cloning of lac genes in Streptococcus lactis ML3[J]. Applied & Environmental Microbiology, 1984, 47(2):245-249. [55] Waller MC, Bober JR, Nair NU, et al.Toward a genetic tool development pipeline for host-associated bacteria[J]. Current Opinion in Microbiology, 2017, 38:156. [56] Van Pijkeren JP, Britton RA.High efficiency recombineering in lactic acid bacteria[J]. Nucleic Acids Res, 2012, 40(10):e76. [57] Van Pijkeren JP, Neoh KM, Sirias D, et al.Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri[J]. Bioengineered, 2012, 3(4):209-217. [58] Lim SI, Min BE, Jung GY.Lagging strand-biased initiation of red recombination by linear double-stranded DNAs[J]. Journal of Molecular Biology, 2008, 384(5):1098. [59] Ellis HM, Yu D, Ditizio T, et al.High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides[J]. Proc Natl Acad Sci USA, 2001, 98(12):6742. [60] Sawitzke JA, Costantino N, Li XT, et al.Probing cellular processes with oligo-mediated recombination and Using the knowledge gained to optimize recombineering[J]. Journal of Molecular Biology, 2011, 407(1):45. [61] Ellis HM, Yu D, Ditizio T, et al.High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides[J]. Proc Natl Acad Sci USA, 2001, 98(12):6742. [62] Huen MSY, Li X, Lu LY, et al.The involvement of replication in single stranded oligonucleotide-mediated gene repair[J]. Nucleic Acids Research, 2006, 34(21):6183. [63] Oh JH, Pijkeren JPV.CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri[J]. Nucleic Acids Res, 2014, 42(17):e131. [64] Borrero J, Chen Y, Dunny GM, et al.Modified lactic acid bacteria detect and inhibit multiresistant Enterococci[J]. ACS Synthetic Biology, 2015, 4(3):299-306. [65] 颜朝阳, 张忠涛, 孟化. 手术治疗肥胖2型糖尿病的研究进展[J]. 国际外科学杂志, 2014, 41(10):698-700. [66] Robinson K, Chamberlain LM, Schofield KM, et al.Oral vaccination of mice against tetanus with recombinant Lactococcus lactis[J]. Nature Biotechnology, 1997, 15(7):653-657. [67] Steidler L.Treatment of murine colitis by Lactococcus lactis secreting interleukin-10[J]. Science, 2000, 289(5483):1352-1355. [68] Xin KQ, Hoshino Y, Toda Y, et al.Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env[J]. Blood, 2003, 102(1):223-228. [69] Kellermayer R.Epigenetics and the developmental origins of inflammatory bowel diseases[J]. Can J Gastroenterol, 2012, 26:909-915. [70] Han W, Mercenier A, Aitbelgnaoui A, et al.Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase[J]. Inflammatory Bowel Diseases, 2010, 12(11):1044-1052. [71] Pang Q, Ji Y, Li Y, et al.Intragastric administration with recombinant Lactococcus lactis producing heme oxygenase-1 prevents lipopolysaccharide-induced endotoxemia in rats[J]. Fems Microbiology Letters, 2010, 283(1):62-68. [72] Motta JP, Humaran LB, Deraison C, et al.Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis[J]. Science Translational Medicine, 2012, 4(158):622-632. [73] Wang SM, Zhang LW, Gu W, et al. Screening for antiproliferative effect of Lactobacillus strains against colon cancer HT-29 cells[J]. Advanced Materials Research, 2012, 573-574:1039-1043. [74] Kim JY, Woo HJ, Kim YS, et al.Screening for antiproliferative effects of cellular components from lactic acid bacteria against human cancer cell lines[J]. Biotechnology Letters, 2002, 24(17):1431-1436. [75] Welman, Alan D, Maddox, et al. Exopolysaccharides from lactic acid bacteria:perspectives and challenges[J]. Trends in Biotechnology, 2003, 21(6):269-274. [76] 梁增澜, 李超, 王艳萍. 乳酸菌胞外多糖免疫活性的研究进展[J]. 食品与发酵工业, 2018, 44(2):266-272. [77] Patnaik R, Louie S, Gavrilovic V, et al.Genome shuffling of Lacto-bacillus for improved acidtolerance[J]. Nature Biotechnology, 2002, 20(7):707. [78] Atsumi S, Cann AF, Connor MR, et al.Metabolic engineering of Escherichia coli for 1-butanol production[J]. Metabolic Engineering, 2007, 10(6):305-311. [79] Ezeji TC, Qureshi N, Blaschek HP.Bioproduction of butanol from biomass:from genes to bioreactors[J]. Current Opinion in Biotechnology, 2007, 18(3):220-227. [80] Antoni D, Zverlov VV, Schwarz WH.Biofuels from microbes[J]. Applied Microbiology & Biotechnology, 2007, 77(1):23-35. [81] Qureshi N, Hughes S, Maddox IS, et al.Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption[J]. Bioprocess Biosyst Eng, 2005, 27(4):215-222. [82] Liu S, Bischoff KM, Leathers TD, et al.Adaptation of lactic acid bacteria to butanol[J]. Biocatalysis & Agricultural Biotechnology, 2012, 1(1):57-61. |
[1] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[2] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[3] | ZHAO Jia, ZHAO Fei-yan, SHEN Xin, GAO Guang-qi, SUN Zhi-hong. Advances in the Antioxidant Activities of Lactic Acid Bacteria and Their Applications [J]. Biotechnology Bulletin, 2023, 39(11): 182-190. |
[4] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[5] | TANG Guang-fu, GUI Yan-ling, MAN Hai-qiao, ZHAO Jie-hong. Editing pyrG Gene of Monascus by CRISPR/Cas 9 and Its Effects on Secondary Metabolism [J]. Biotechnology Bulletin, 2022, 38(8): 198-205. |
[6] | ZHOU Lin, LIANG Xuan-ming, ZHAO Lei. Biosynthesis of Natural Carotenoids:Progress and Perspective [J]. Biotechnology Bulletin, 2022, 38(7): 119-127. |
[7] | QIU Yi-bin, MA Yan-qin, SHA Yuan-yuan, ZHU Yi-fan, SU Er-zheng, LEI Peng, LI Sha, XU Hong. Research Progress in Molecular Genetic Manipulation Technology of Bacillus amyloliquefaciens and Its Application [J]. Biotechnology Bulletin, 2022, 38(2): 205-217. |
[8] | GUO Xiao-zhen, ZHANG Xue-fu. Analysis of the Development Trend in the Field of Plant Synthetic Biology [J]. Biotechnology Bulletin, 2022, 38(2): 289-296. |
[9] | ZHAO Yu-xue, WANG Yun, YU Lu-yao, LIU Jing-jing, SI Jin-ping, ZHANG Xin-feng, ZHANG Lei. Structure and Application of C-glycosyltransferases in Plants [J]. Biotechnology Bulletin, 2022, 38(10): 18-28. |
[10] | TIAN Jing, ZHANG Jian-guo. Research Progress in the Distribution of Lactic Acid Bacteria on the Surface of Plants [J]. Biotechnology Bulletin, 2021, 37(9): 3-10. |
[11] | XU Jin-yi, NA Bin-bin, LIU Shun, CHEN Chao, SUN Hong, ZHENG Yu-long. Excellent Lactic Acid Bacteria for Silage and Their Application [J]. Biotechnology Bulletin, 2021, 37(9): 39-47. |
[12] | YE Min, GAO Jiao-qi, ZHOU Yong-jin. Engineering Non-conventional Yeast Cell Factory for the Biosynthesis of Natural Products [J]. Biotechnology Bulletin, 2021, 37(8): 12-24. |
[13] | ZHANG Chan, YAO Guang-long, ZHANG Jun-feng, YU Jing, YANG Dong-mei, CHEN Ping, WU You-gen. Research Progress on Patchoulol Molecular Regulation and Synthetic Biology in Pogostemon cablin [J]. Biotechnology Bulletin, 2021, 37(8): 55-64. |
[14] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[15] | CHANG Han-wen, ZHENG Xin-ling, LUO Jian-mei, WANG Min, SHEN Yan-bing. Tolerance Elements and Their Application Progress on the Construction of Highly-efficient Microbial Cell Factory [J]. Biotechnology Bulletin, 2020, 36(6): 13-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||