[1] Mendes LW, Tsai SM, Navarrete AA, et al.Soil-borne microbiome:linking diversity to function[J]. Microbial Ecology, 2015, 70(1):255-265. [2] Nelson MB, Martiny AC, Martiny JBH.Global biogeography of microbial nitrogen-cycling traits in soil[J]. Proceedings of the National Academy of Sciences, 2016, 113(29):8033-8040. [3] 袁志辉, 王健, 杨文蛟, 等. 土壤微生物分离新技术的研究进展[J]. 土壤学报, 2014, 51(6):1183-1191. [4] Dahal B, Nandakafle G, Perkins L, et al.Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota[J]. Microbiological Research, 2017, 195:31-39. [5] 车荣晓, 邓永翠, 吴伊波, 等. 生物固氮与有效氮的关系:从分子到群落[J]. 生态学杂志, 2017, 36(1):224-232. [6] 康文龙, 台喜生, 李师翁, 等. 祁连山高寒草原碱性土壤固氮微生物数量及固氮基因(nifH)群落结构研究[J]. 冰川冻土, 2013, 35(1):208-216. [7] Rotthauwe JH, Witzel KP, Liesack W, et al.The ammonia monooxygenase structural gene amoA as a functional marker:Molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied & Environmental Microbiology, 1998, 63(12):4704-4712. [8] Francis CA, Roberts KJ, Beman JM, et al.Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41):14683-14688. [9] 侯海军, 秦红灵, 陈春兰, 等. 土壤氮循环微生物过程的分子生态学研究进展[J]. 农业现代化研究, 2014, 35(5):588-594. [10] Yang Y, Zhang M, Junwei HU, et al.Effects of nitrogen fertilizer application on abundance and community structure of ammonia oxidizing bacteria and archaea in a North China agricultural soil[J]. Acta Ecologica Sinica, 2017, 37(11):3636-3646. [11] Throbäck IN, Enwall K, Jarvis Å, et al.Reassessing PCR primers targeting nirS, nirK, and nosZ, genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3):401-417. [12] Henry S, Baudoin E, López-Gutiérrez JC, et al.Quantification of denitrifying bacteria in soils by nirK, gene targeted real-time PCR[J]. Journal of Microbiological Methods, 2004, 59(3):327-335. [13] Henry S, Bru D, Stres B, et al.Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils[J]. Applied & Environmental Microbiology, 2006, 72(8):5181-5189. [14] Schmid MC, Hooper AB, Klotz MG, et al.Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria.[J]. Environmental Microbiology, 2008, 10(11):3140-3149. [15] 陈宗姮, 徐杉杉, 李祥, 等. pH对厌氧氨氧化反应脱氮效能的影响[J]. 化工环保, 2015, 35(2):121-126. [16] Wang H, Ji G, Bai X.Quantifying nitrogen transformation process rates using nitrogen functional genesin a multimedia biofilter under hydraulic loading rate constraints[J]. Ecological Engineering, 2015, 82:323-329. [17] Xi R, Long XE, Huang S, et al.pH rather than nitrification and urease inhibitors determines the community of ammonia oxidizers in a vegetable soil[J]. AMB Express, 2017, 7(1):129-142. [18] Samad MS, Biswas A, Bakken LR, et al.Phylogenetic and functional potential links pH and N2O emissions in pasture soils[J]. Scientific Reports, 2016, 6(1):35990-35998 [19] Shi H, Wang L, Li X, et al.Genome-wide transcriptome profiling of nitrogen fixation in Paenibacillus sp. WLY78[J]. BMC Microbiology, 2016, 16(1):25-25. [20] 陈重军, 冯宇, 汪瑶琪, 等. 厌氧氨氧化反应影响因素研究进展[J]. 生态环境学报, 2016, 25(2):346-352. [21] 丁龙君. 水稻土中异化铁还原与氮循环耦合的微生物机制研究[D]. 北京:中国科学院大学, 2014. [22] Chen Y, Jiang Y, Huang H, et al. Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments[J]. Science of the Total Environment, 2018, 637-638:1400-1412. [23] Xue K, Nostrand JDV, Vangronsveld J, et al.Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil[J]. Chemosphere, 2015, 138:469-477. [24] Wang H, Li X, Li X, et al.Changes of microbial population and N-cycling function genes with depth in three Chinese paddy soils[J]. PLoS One, 2017, 12(12):e0189506. [25] Cardon ZG, Stark JM, Herron PM, et al.Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(47):18988-18993. [26] Stone MM, Kan J, Plante AF.Parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory[J]. Soil Biology & Biochemistry, 2015, 80(80):273-282. [27] 杨扬. 铜陵铜尾矿废弃地中参与金属硫化物氧化的微生物主要类群与分布[D]. 合肥:安徽大学, 2014. [28] 陶巍. 某矿区酸性矿山废水污染土壤及湿地处理系统的调查研究[D]. 合肥:合肥工业大学, 2017. [29] Delong EF.Archaea in coastal marine environments[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(12):5685-5689. [30] Li C, Yan K, Tang L, et al.Change in deep soil microbial communities due to long-term fertilization[J]. Soil Biology & Biochemistry, 2014, 75:264-272. [31] Ellegaard KM, Klasson L, Näslund K, et al.Comparative genomics of wolbachia and the bacterial species concept[J]. PLoS Genetics, 2013, 9(4):e1003381-e1003381. [32] 王杨. 不同酸度土壤硝化和反硝化活性的差异[D]. 大连:大连交通大学, 2014. [33] 袁怡, 黄勇, 李祥, 等. 硫酸盐还原-氨氧化反应的特性研究[J]. 环境科学, 2013, 34(11):4362-4369. [34] Kong L, Jing H, Kataoka T, et al.Diversity and spatial distribution of hydrazine oxidoreductase(hzo)gene in the oxygen minimum zone off Costa Rica[J]. PLoS One, 2013, 8(10):e78275. |