Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (11): 94-102.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0220
Previous Articles Next Articles
ZHU Cai-lin(), LÜ Xiang, XIA Xiao-le()
Received:
2020-03-05
Online:
2020-11-26
Published:
2020-11-20
Contact:
XIA Xiao-le
E-mail:zhucl1994@163.com;xiaolexia@jiangnan.edu.cn
ZHU Cai-lin, LÜ Xiang, XIA Xiao-le. Effect of Site-directed Mutagenesis of Amino Acids in Lid Region on the Enzymatic Properties of T1 Lipase[J]. Biotechnology Bulletin, 2020, 36(11): 94-102.
突变体 | 引物(5'-3') |
---|---|
A190L | 上游:5'- AAAGCAGTGTTAGAACTGGCCGCCGTGGC- AAGCAACGTG -3' |
下游:5'- GCTTGCCACGGCGGCCAGTTCTAACACTGC- TTTCTGCAG -3' | |
L188M | 上游:5'- CTGCAGAAAGCAGTGATGGAAGCAGCCGCC- GTGGCA -3' |
下游:5'- TGCCACGGCGGCTGCTTCCATCACTGCTTTC- TGCAG -3' | |
A190Y | 上游: 5'-CAGAAAGCAGTGTTAGAATACGCCGCCGTGG- CAAGC-3' |
下游: 5'-GCTTGCCACGGCGGCGTATTCTAACACTGCTTT- CTG-3' |
突变体 | 引物(5'-3') |
---|---|
A190L | 上游:5'- AAAGCAGTGTTAGAACTGGCCGCCGTGGC- AAGCAACGTG -3' |
下游:5'- GCTTGCCACGGCGGCCAGTTCTAACACTGC- TTTCTGCAG -3' | |
L188M | 上游:5'- CTGCAGAAAGCAGTGATGGAAGCAGCCGCC- GTGGCA -3' |
下游:5'- TGCCACGGCGGCTGCTTCCATCACTGCTTTC- TGCAG -3' | |
A190Y | 上游: 5'-CAGAAAGCAGTGTTAGAATACGCCGCCGTGG- CAAGC-3' |
下游: 5'-GCTTGCCACGGCGGCGTATTCTAACACTGCTTT- CTG-3' |
试剂 | 体积/μL |
---|---|
ddH2O | 18 |
2×Max Buffer | 25 |
dNTP Mix(10 mmol/L) | 1 |
pET28a-T1 | 1 |
上游引物(10 μmol/L) | 2 |
下游引物(10 μmol/L) | 2 |
Phanta Max Super-Fidelity DNA Ploymerase | 1 |
试剂 | 体积/μL |
---|---|
ddH2O | 18 |
2×Max Buffer | 25 |
dNTP Mix(10 mmol/L) | 1 |
pET28a-T1 | 1 |
上游引物(10 μmol/L) | 2 |
下游引物(10 μmol/L) | 2 |
Phanta Max Super-Fidelity DNA Ploymerase | 1 |
温度/℃ | 时间 | 循环数 |
---|---|---|
95 | 30 s | 1 |
95 | 15 s | |
68 | 15 s | 30 |
72 | 6 min | |
72 | 5 min | 1 |
温度/℃ | 时间 | 循环数 |
---|---|---|
95 | 30 s | 1 |
95 | 15 s | |
68 | 15 s | 30 |
72 | 6 min | |
72 | 5 min | 1 |
突变体 | 总酶活/U | 总蛋白含 量/mg | 比酶活/ (U/mg) | 蛋白收 率/% |
---|---|---|---|---|
野生型 | 844 | 2.5 | 337 | 45 |
A190L | 1 657 | 4.2 | 395 | 49 |
L188M | 1 434 | 3.8 | 377 | 57 |
A190Y | 1 479 | 3.6 | 411 | 55 |
L188M/A190L | 1 760 | 4.4 | 400 | 43 |
L188M/A190Y | 1 337 | 3.3 | 405 | 48 |
突变体 | 总酶活/U | 总蛋白含 量/mg | 比酶活/ (U/mg) | 蛋白收 率/% |
---|---|---|---|---|
野生型 | 844 | 2.5 | 337 | 45 |
A190L | 1 657 | 4.2 | 395 | 49 |
L188M | 1 434 | 3.8 | 377 | 57 |
A190Y | 1 479 | 3.6 | 411 | 55 |
L188M/A190L | 1 760 | 4.4 | 400 | 43 |
L188M/A190Y | 1 337 | 3.3 | 405 | 48 |
[1] | Wang T, Qin G. Lipases and its application in food industry[J]. Meat Research, 2010,9:82-84. |
[2] | Abdul Wahab R, Basri M, Raja Abdul Rahman RNZ, et al. Development of a catalytically stable and efficient lipase through an increase in hydrophobicity of the oxyanion residue[J]. Journal of Molecular Catalysis B:Enzymatic, 2015,122:282-288. |
[3] |
Reis P, Holmberg K, Watzke H, et al. Lipases at interfaces:A review[J]. Advances in Colloid and Interface Science, 2009, 147-148:237-250.
URL pmid: 18691682 |
[4] | 薛龙吟, 林瑞凤, 舒正玉, 等. 黑曲霉脂肪酶盖子结构域突变对其活性的影响[J]. 生物技术通报, 2010(2):173-177. |
Xue LY, Lin RF, Shu ZY, et al. Effect of Mutation at the lid domain of Aspergillus niger lipase on activity[J]. Biotechnology Bulletin, 2010(2):173-177. | |
[5] | 易华伟, 唐晓峰. 基于氨基酸序列和模拟结构预测蛋白质稳定性的研究进展[J]. 生物技术通报, 2017,33(4):83-89. |
Yi HW, Tang XF. Research progress on the prediction of protein stability based on amino acid sequence and simulated structure[J]. Biotechnology Bulletin, 2017,33(4):83-89. | |
[6] |
Shih TW, Pan TM. Substitution of Asp189 residue alters the activity and thermostability of Geobacillus sp. NTU 03 lipase[J]. Biotechnology Letters, 2011,33(9):1841-1846.
doi: 10.1007/s10529-011-0635-3 URL pmid: 21544610 |
[7] |
Santarossa G, Lafranconi PG, Alquati C, et al. Mutations in the “lid” region affect chain length specificity and thermostability of a Pseudomonas fragi lipase[J]. FEBS Lett, 2005,579(11):2383-2386.
doi: 10.1016/j.febslet.2005.03.037 URL pmid: 15848176 |
[8] |
Panizza P, Cesarini S, Diaz P, et al. Saturation mutagenesis in selected amino acids to shift Pseudomonas sp. acidic lipase Lip I. 3 substrate specificity and activity[J]. Chem Commun, 2015,51(7):1330-1333.
doi: 10.1039/C4CC08477B URL |
[9] |
Karkhane AA, Yakhchali B, Jazii FR, et al. The effect of substitution of Phe181 and Phe182 with Ala on activity, substrate specificity and stabilization of substrate at the active site of Bacillus thermocatenulatus lipase[J]. Journal of Molecular Catalysis B:Enzymatic, 2009,61(3-4):162-167.
doi: 10.1016/j.molcatb.2009.06.006 URL |
[10] | 林瑞凤. 扩展青霉脂肪酶 “盖子” 结构域突变对其活性影响的研究[D]. 福州:福建师范大学, 2010. |
Lin RF. Effect of Mutation at the lid subdomain of Penicillium expansum lipase on its activity[D]. Fuzhou:Fujian Normal University, 2010. | |
[11] |
Wong H, Schotz MC. The lipase gene family[J]. Journal of Lipid Research, 2002,43(7):993-999.
doi: 10.1194/jlr.r200007-jlr200 URL pmid: 12091482 |
[12] |
Bloom JD, Labthavikul ST, Otey CR, et al. Protein stability promotes evolvability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(15):5869-5874.
doi: 10.1073/pnas.0510098103 URL pmid: 16581913 |
[13] |
Ruslan R, Abd Rahman RN, Leow TC, et al. Improvement of thermal stability via outer-loop ion pair interaction of mutated T1 lipase from Geobacillus zalihae strain T1[J]. International Journal of Molecular Sciences, 2012,13(1):943-960.
doi: 10.3390/ijms13010943 URL pmid: 22312296 |
[14] | Wang Y, Wei DQ, Wang JF. Molecular dynamics studies on T1 lipase:insight into a double-flap mechanism[J]. Journal of Chemical Information, 2010,50(5):875-878. |
[15] |
Tang QY, Lan DM, Yang B, et al. Site-directed mutagenesis studies of hydrophobic residues in the lid region of T1 lipase[J]. European Journal of Lipid Science and Technology, 2017,119(3):1600107.
doi: 10.1002/ejlt.201600107 URL |
[16] |
Wahab RA, Basri M, Rahman RN, et al. Manipulation of the conformation and enzymatic properties of T1 lipase by site-directed mutagenesis of the protein core[J]. Applied Biochemistry and Biotechnology, 2012,167(3):612-620.
doi: 10.1007/s12010-012-9728-2 URL |
[17] |
Meersman F, Dobson CM., Heremans K. Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions[J]. Chemical Society Reviews, 2006,35(10):908-917.
doi: 10.1039/b517761h URL pmid: 17003897 |
[18] | Eisenmenger MJ, Reyes-De-Corcuera JI. High pressure enhance-ment of enzymes:A review[J]. Enzyme and Microbial Technol-ogy, 2009,45(5):331-347. |
[19] |
Li H, Zhang X. Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1[J]. Protein Expression and Purification, 2005,42(1):153-159.
doi: 10.1016/j.pep.2005.03.011 URL pmid: 15939301 |
[20] | 汪璞, 王方华, 唐庆芸, 等. 固定化嗜热嗜碱土芽孢杆菌T1脂肪酶的制备及其催化特性研究[J]. 现代食品科技, 2015,31(5):175-180. |
Wang P, Wang FH, Tang QY, et al. Preparation and catalytic properties of immobilized thermoalkaliphilic T1 lipase from Geobacillus sp. strain T1[J]. Modern Food Science and Technology, 2015,31(5):175-180. | |
[21] | Chen R, Guo L, Dang H. Gene cloning, expression and characterization of a cold-adapted lipase from a psychrophilic deep-sea bacterium Psychrobacter sp. C18[J]. World Journal of Microbiology and Biotechnology, 2010,27(2):431-441. |
[22] |
Zhang Y, Zhao J, Zeng R. Expression and characterization of a novel mesophilic protease from metagenomic library derived from Antarctic coastal sediment[J]. Extremophiles, 2010,15(1):23-29.
doi: 10.1007/s00792-010-0332-5 URL pmid: 21069403 |
[23] |
Leow TC, Rahman RN, Basri M, et al. A thermoalkaliphilic lipase of Geobacillus sp. T1[J]. Extremophiles, 2007,11(3):527-535.
doi: 10.1007/s00792-007-0069-y URL pmid: 17426920 |
[24] | 孙清扬, 张静静, 李冰清, 等. 金属离子对重组深渊滕黄单胞菌低温淀粉酶LamA的活性和稳定性影响[J]. 微生物学通报, 2019,46(11):2848-2856. |
Sun QY, Zhang JJ, Li BQ, et al. Effect of metal ions on the activity and stability of recombinant cold-adapted α-amylase LamA from Luteimonas abyssi[J]. Microbiology China, 2019,46(11):2848-2856. | |
[25] |
Zhou H, Zhou Y. Quantifying the effect of burial of amino acid residues on protein stability[J]. Proteins, 2004,54(2):315-322.
doi: 10.1002/prot.10584 URL pmid: 14696193 |
[26] |
Mabrouk SB, Aghajari N, Ali MB, et al. Enhancement of the thermostability of the maltogenic amylase MAUS149 by Gly312Ala and Lys436Arg substitutions[J]. Bioresource Technology, 2011,102(2):1740-1746.
URL pmid: 20855205 |
[27] |
Behera RK, Mazumdar S. Thermodynamic basis of the thermostability of CYP175A1 from Thermus thermophilus[J]. International Journal of Biological Macromolecules, 2010,46(4):412-418.
URL pmid: 20138909 |
[28] |
Kannan N, Vishveshwara S. Aromatic clusters:a determinant of thermal stability of thermophilic proteins[J]. Protein Engineering, 2000,13(11):753-761.
doi: 10.1093/protein/13.11.753 URL pmid: 11161106 |
[29] | 黄奎. 疏棉状嗜热丝孢菌脂肪酶在毕赤酵母表面展示[D]. 广州:华南理工大学, 2017. |
Huang K. Cell surface displaying of Thermomyces lanuginosus lipase on Pichia pastoris[D]. Guangzhou:South China University of Technology, 2017. | |
[30] |
Rodrigues DS, Mendes AA, Filice M, et al. Different derivatives of a lipase display different regioselectivity in the monohydrolysis of per-O-acetylated 1-O-substituted-β-galactopyranosides[J]. Journal of Molecular Catalysis B:Enzymatic, 2009,58(1-4):36-40.
doi: 10.1016/j.molcatb.2008.11.001 URL |
[31] |
Buettner K, Hertel TC, Pietzsch M. Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis[J]. Amino Acids, 2012,42(2-3):987-996.
doi: 10.1007/s00726-011-1015-y URL pmid: 21863232 |
[32] |
Reetz MT, Carballeira JD, Vogel A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability[J]. Angewandte Chemie International Edition, 2006,45(46):7745-7751.
doi: 10.1002/anie.200602795 URL pmid: 17075931 |
[33] |
Bhardwaj A, Leelavathi S, Mazumdar-Leighton S, et al. The critical role of N-and C-terminal contact in protein stability and folding of a family 10 xylanase under extreme conditions[J]. PLoS One, 2010,5(6):e11347.
doi: 10.1371/journal.pone.0011347 URL pmid: 20596542 |
[1] | ZHAO Sai-sai, ZHANG Xiao-dan, JIA Xiao-yan, TAO Da-wei, LIU Ke-yu, NING Xi-bin. Investigation on the Complex Mutagenesis Selection of High-yield Nitrate Reductase Strain Staphylococcus simulans ZSJ6 and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2023, 39(4): 103-113. |
[2] | ZHANG Kai-ping, LIU Yan-li, TU Mian-liang, LI Ji-wei, WU Wen-biao. Optimization of Producing Cellulase by Aspergillus fumigatus A-16 and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2022, 38(9): 215-225. |
[3] | CHANG Qing, SHU Yue-rong, WANG Wen-tao, JIANG Hao, YAN Quan-de, QIAN Zheng, GAO Xue-chun, WU Jin-hong, ZHANG Yong. Heterologous Expression and Characterization of Endo-type Alginate Lyase from Yeosuana marina sp. JLT21 [J]. Biotechnology Bulletin, 2022, 38(2): 123-131. |
[4] | TIAN Jia-hui, FENG Jia-li, LU Jun-hua, MAO Lin-jing, HU Zhu-ran, WANG Ying, CHU Jie. Isolation,Purification and Characterization of Laccase LacT-1 from Cerrena unicolor [J]. Biotechnology Bulletin, 2021, 37(8): 186-194. |
[5] | LIU Shan, YE Wei, ZHU Mu-zi, LI Sai-ni, DENG Zhang-shuang, ZHANG Wei-min. Cloning,Expression and Characterization of a Novel Acyltransferase GPAT [J]. Biotechnology Bulletin, 2021, 37(11): 257-266. |
[6] | ZHAO Hai-yan, SONG Chen-bin, LIU Zheng-ya, MA Xing-rong, SHANG Hui-hui, LI An-hua, GUAN Xian-jun, WANG Jian-she. Cloning,Recombinant Expression and Enzymatic Properties of α-Amylase Gene from Laceyella sp. [J]. Biotechnology Bulletin, 2020, 36(8): 23-33. |
[7] | GUO Jing-jing, GUO Lei-lei, ZHAO Yun-xiu, DAI Yi-jun. Research on the NAMase of Ensifer meliloti 1021 and Regulation Mechanism of 3-Cyanopyridine [J]. Biotechnology Bulletin, 2019, 35(8): 51-58. |
[8] | ZHANG Qing-fang, PANG Fei, YU Shuang, XIAO Jing-hui, DOU Shao-hua, CHI Nai-yu. Screening and Identification of High Uricase-producting Strain from Marine and the Enzymatic Properties [J]. Biotechnology Bulletin, 2019, 35(7): 61-69. |
[9] | XU Shan ,LI Ren-qiang ,ZHENG Zhen-hua ,ZHANG Yun ,SUN Ai-jun ,HU Yun-feng. Properties of Extracellular Protease of Microbe DH-2 from Mangrove and Optimization of Enzyme Producing Conditions [J]. Biotechnology Bulletin, 2018, 34(6): 120-127. |
[10] | QIN Ri-tian, XIE Zhan-ling. Isolation,Purification,Characterization and Structural Analysis of a Pectinase PGL1 Produced by Fusarium sp. Q7-31T [J]. Biotechnology Bulletin, 2018, 34(4): 151-160. |
[11] | QIN Hai-bin, XIONG Tao, ZHANG Bo, NIU Kun. Site-directed Mutation of α-ketoglutorate Semialdehye Dehydrogenase and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2017, 33(8): 180-185. |
[12] | ZHENG Xiang, YANG He-bao, HU Mei-rong, LIU Chun-mao, WU Fang-tong, CAO Qian-rong. Enzymatic Characteristics of a Novel Protease and Its Application for Dehairing [J]. Biotechnology Bulletin, 2017, 33(5): 183-189. |
[13] | PENG Li-sha1, 2, ZHANG Yong-xiang1, 2, YAN Qing1, 2, WANG Xiang1, 2, LI Jun1, 2. Separation,Purification,and Enzymatic Properties of Thermo-tolerant β-glucosidase from Tridchoderma viride [J]. Biotechnology Bulletin, 2016, 32(9): 189-196. |
[14] | LI Guang-lei, ZHANG Juan, FANG Zhen, LONG Ming-xing, DU Guo-cheng, CHEN Jian. Expression of Keratinase Gene Derived from Stenotrophomonas maltophilia in Pichia pastoris [J]. Biotechnology Bulletin, 2016, 32(8): 152-160. |
[15] | ZHANG Xue-ling CHEN Xiao-li LI He. Determination of Enzymatic Properties of a Laccase Lac1338,and Effects of Directed Mutants on the Degradations of Different Dyes [J]. Biotechnology Bulletin, 2016, 32(7): 170-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||