Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (10): 225-233.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1344
Previous Articles Next Articles
DILIREBA·Abudourousuli (), MUYESAIER·Aosiman , ZULIHUMAER·Rouzi , MA Qin, LEI Rui-feng, AN Deng-di()
Received:
2020-11-02
Online:
2021-10-26
Published:
2021-11-12
Contact:
AN Deng-di
E-mail:1306891300@qq.com;anddg@yeah.net
DILIREBA·Abudourousuli , MUYESAIER·Aosiman , ZULIHUMAER·Rouzi , MA Qin, LEI Rui-feng, AN Deng-di. Advances on Microbial Diversity and Biological Improvement of Saline-alkali Soil[J]. Biotechnology Bulletin, 2021, 37(10): 225-233.
[1] |
Li H, Zhao Q, Huang H. Current states and challenges of salt-affected soil remediation by cyanobacteria[J]. Sci Total Environ, 2019, 669:258-272.
doi: 10.1016/j.scitotenv.2019.03.104 URL |
[2] |
Manasa MRK, Katukuri NR, Nair SD, et al. Role of biochar and organic substrates in enhancing the functional characteristics and microbial community in a saline soil[J]. J Environ Manage, 2020, 269:110737.
doi: S0301-4797(20)30669-1 pmid: 32425164 |
[3] | Ventosa A, Mellado E, Sanchez-Porro C, et al. Halophilic and halotolerant micro-organisms from soils[M]// Microbiology of extreme soils. Berlin: Springer, 2008:87-115. |
[4] |
Hollister EB, Engledow AS, Hammett AJM, et al. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments[J]. ISME J, 2010, 4(6):829-838.
doi: 10.1038/ismej.2010.3 pmid: 20130657 |
[5] |
Ferris H, Tuomisto H. Unearthing the role of biological diversity in soil health[J]. Soil Biol Biochem, 2015, 85:101-109.
doi: 10.1016/j.soilbio.2015.02.037 URL |
[6] |
Graham EB, Curiel Yuste J. Microbes as engines of ecosystem function:When does community structure enhance predictions of ecosystem processes?[J]. Front Microbiol, 2016, 7:214.
doi: 10.3389/fmicb.2016.00214 pmid: 26941732 |
[7] |
Sorokin DY, Banciu HL, Muyzer G. Functional microbiology of soda lakes[J]. Curr Opin Microbiol, 2015, 25:88-96.
doi: 10.1016/j.mib.2015.05.004 URL |
[8] |
Bao S, Wang Q, Bao X, et al. Biological treatment of saline-alkali soil by sulfur-oxidizing bacteria[J]. Bioengineered, 2016, 7(5):372-375.
doi: 10.1080/21655979.2016.1226664 URL |
[9] |
Gunatilaka AAL. Natural products from plant-associated microorganisms:distribution, structural diversity, bioactivity, and implications of their occurrence[J]. J Nat Prod, 2006, 69(3):509-526.
pmid: 16562864 |
[10] | Rosenberg E, et al. The Prokaryotes-Prokaryotic Communities and Ecophysiology[M]//Oren A. Life at high salt concentrations. Berlin Heidelberg: Springer-Verlag, 2013:421-440. |
[11] |
Zhao Y, Zhang F, Yang L, et al. Response of soil bacterial community structure to different reclamation years of abandoned salinized farmland in arid China[J]. Arch Microbiol, 2019, 201(9):1219-1232.
doi: 10.1007/s00203-019-01689-x URL |
[12] |
Lehmann A, Zheng W, Rillig MC. Soil biota contributions to soil aggregation[J]. Nat Ecol Evol, 2017, 1(12):1828-1835.
doi: 10.1038/s41559-017-0344-y pmid: 29038473 |
[13] |
Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nat Commun, 2019, 10(1):4841.
doi: 10.1038/s41467-019-12798-y URL |
[14] |
Griffiths RI, Thomson BC, Plassart P, et al. Mapping and validating predictions of soil bacterial biodiversity using European and national scale datasets[J]. Appl Soil Ecol, 2016, 97:61-68.
doi: 10.1016/j.apsoil.2015.06.018 URL |
[15] | Sun R, Zhang XX, Guo X, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Science Foundation in China, 2015, 88(4):9-18. |
[16] | Nacke H, Thrmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in german forest and grassland soils[J]. PLoS One, 2011, 6(2):1-12. |
[17] | Zhang K, Shi Y, Cui X, et al. Salinity is a key determinant for soil microbial communities in a desert ecosystem[J]. mSystems, 2019, 4(1):e00225-18. |
[18] |
Zhao S, Liu JJ, Banerjee S, et al. Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation[J]. Sci Rep, 2018, 8(1):4550.
doi: 10.1038/s41598-018-22788-7 URL |
[19] |
Siles JA, Margesin R. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils:What are the driving factors?[J]. Microb Ecol, 2016, 72(1):207-220.
doi: 10.1007/s00248-016-0748-2 pmid: 26961712 |
[20] |
Xie K, Deng Y, Zhang S, et al. Prokaryotic community distribution along an ecological gradient of salinity in surface and subsurface saline soils[J]. Sci Rep, 2017, 7(1):13332.
doi: 10.1038/s41598-017-13608-5 URL |
[21] |
van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecol Lett, 2008, 11(3):296-310.
pmid: 18047587 |
[22] |
Cowan DA, Makhalanyane TP, Dennis PG. Microbial ecology and biogeochemistry of continental Antarctic soils[J]. Front Microbiol, 2014, 5:154.
doi: 10.3389/fmicb.2014.00154 pmid: 24782842 |
[23] |
Li Z, Tian D, Wang B, et al. Microbes drive global soil nitrogen mineralization and availability[J]. Global Change Biol, 2019, 25(3):1078-1088.
doi: 10.1111/gcb.2019.25.issue-3 URL |
[24] |
Wagner MR, Lundberg DS, Coleman-Derr D, et al. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative[J]. Ecol Lett, 2014, 17(6):717-726.
doi: 10.1111/ele.2014.17.issue-6 URL |
[25] |
Koide RT, Dickie IA. Effects of mycorrhizal fungi on plant populations[J]. Plant Soil, 2002, 244(1-2):307-317.
doi: 10.1023/A:1020204004844 URL |
[26] |
Wolfe BE, Husband BC, Klironomos JN. Effects of a belowground mutualism on an aboveground mutualism[J]. Ecol Lett, 2005, 8(2):218-223.
doi: 10.1111/ele.2005.8.issue-2 URL |
[27] |
Bhatti AA, Haq S, Bhat RA. Actinomycetes benefaction role in soil and plant health[J]. Microb Pathog, 2017, 111:458-467.
doi: 10.1016/j.micpath.2017.09.036 URL |
[28] |
Daniel, Rolf. The metagenomics of soil[J]. Nat Rev Microbiol, 2005, 3(6):470-478.
pmid: 15931165 |
[29] |
Torsvik V, Øvreås L. Microbial diversity and function in soil:from genes to ecosystems[J]. Curr Opin Microbiol, 2002, 5(3):240-245.
pmid: 12057676 |
[30] |
Hanson CA, Fuhrman JA, Horner-Devine MC, et al. Beyond biogeographic patterns:Processes shaping the microbial landscape[J]. Nat Rev Microbiol, 2012, 10(7):497-506.
doi: 10.1038/nrmicro2795 pmid: 22580365 |
[31] |
Ricks KD, Koide RT. The role of inoculum dispersal and plant species identity in the assembly of leaf endophytic fungal communities[J]. PLoS One, 2019, 14(7):e0219832.
doi: 10.1371/journal.pone.0219832 URL |
[32] |
Cowan DA, Chown SL, Convey P, et al. Non-indigenous microorganisms in the Antarctic:assessing the risks[J]. Trends Microbiol, 2011, 19(11):540-548.
doi: 10.1016/j.tim.2011.07.008 pmid: 21893414 |
[33] |
Tindall BJ. Prokaryotic diversity in the Antarctic:The tip of the iceberg[J]. Microb Ecol, 2004, 47(3):271-283.
pmid: 15054676 |
[34] |
Gaston KJ. Global patterns in biodiversity[J]. Nature, 2000, 405(6783):220-227.
doi: 10.1038/35012228 URL |
[35] |
Chan Y, Van Nostrand JD, Zhou J. Functional ecology of an antar-ctic dry valley[J]. Proc Natl Acad Sci USA, 2013, 110(22):8990-8995.
doi: 10.1073/pnas.1300643110 URL |
[36] |
Howard-Williams C, Hawes I, Gordon S. The environmental basis of ecosystem variability in Antarctica:research in the Latitudinal Gradient Project[J]. Antarctic Science, 2010, 22(6):591-602.
doi: 10.1017/S0954102010000829 URL |
[37] | Shivaji S, Reddy GSN, Aduri RP, et al. Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica[J]. Cell Mol Biol(Noisy-le-grand), 2004, 50(5):525-536. |
[38] |
Verde C, Giordano D, Bellas CM, et al. Chapter four-polar marine microorganisms and climate change[J]. Adv Microb Physiol, 2016, 69:187-215.
doi: S0065-2911(16)30023-6 pmid: 27720011 |
[39] |
Pointing SB, Chan Y, Lacap DC, et al. Highly specialized microbial diversity in hyper-arid polar desert[J]. Proc Natl Acad Sci U S A, 2009, 106(47):19964-19969.
doi: 10.1073/pnas.0908274106 pmid: 19850879 |
[40] |
Rao S, Chan Y, Lacap D, et al. Low-diversity fungal assemblage in an Antarctic Dry Valleys soil[J]. Polar Biol, 2012, 35(4):567-574.
doi: 10.1007/s00300-011-1102-2 URL |
[41] |
Babalola OO, Kirby BM, Le Roes-Hill M, et al. Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils[J]. Environ Microbiol, 2009, 11:566-576.
doi: 10.1111/emi.2009.11.issue-3 URL |
[42] |
Makhalanyane TP, Valverde A, Birkeland NK, et al. Evidence for successional development in Antarctic hypolithic bacterial communities[J]. ISME J, 2013, 7(11):2080-2090.
doi: 10.1038/ismej.2013.94 pmid: 23765099 |
[43] |
Goordial J, Davila A, Greer CW, et al. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert[J]. Environ Microbiol, 2017, 19(2):443-458.
doi: 10.1111/emi.2017.19.issue-2 URL |
[44] |
Rousk J, Baath E, Brookes PC, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. ISME J, 2010, 4(10):1340-1351.
doi: 10.1038/ismej.2010.58 URL |
[45] |
Wang K, Zhang Y, Tang Z, et al. Effects of grassland afforestation on structure and function of soil bacterial and fungal communities[J]. Sci Total Environ, 2019, 676:396-406.
doi: 10.1016/j.scitotenv.2019.04.259 URL |
[46] |
Canfora L, Bacci G, Pinzari F, et al. Salinity and bacterial diversity:To what extent does the concentration of salt affect the bacterial community in a saline soil?[J]. PLoS One, 2014, 9(9):e106662.
doi: 10.1371/journal.pone.0106662 URL |
[47] |
Navarro-Noya YE, Valenzuela-Encinas C, Sandoval-Yuriar A, et al. Archaeal communities in a heterogeneous hypersaline-alkaline soil[J]. Archaea, 2015, 2015:646820.
doi: 10.1155/2015/646820 pmid: 26074731 |
[48] |
Li Y, Kong Y, Teng D, et al. Rhizobacterial communities of five co-occurring desert halophytes[J]. PeerJ, 2018, 6:e5508.
doi: 10.7717/peerj.5508 URL |
[49] |
Chu H, Fierer N, Lauber CL, et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environ Microbiol, 2010, 12(11):2998-3006.
doi: 10.1111/emi.2010.12.issue-11 URL |
[50] |
Zeng Q, An S, Liu Y, et al. Biogeography and the driving factors affecting forest soil bacteria in an arid area[J]. Sci Total Environ, 2019, 680:124-131.
doi: 10.1016/j.scitotenv.2019.04.184 URL |
[51] |
Ren B, Hu Y, Chen B, et al. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China[J]. Sci Rep, 2018, 8(1):5619.
doi: 10.1038/s41598-018-24040-8 URL |
[52] |
Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities[J]. Proc Natl Acad Sci U S A, 2006, 103:626-631.
pmid: 16407148 |
[53] |
Lozupone CA, Knight R. Global patterns in bacterial diversity[J]. Proc Natl Acad Sci U S A, 2007, 104(27):11436-11440.
doi: 10.1073/pnas.0611525104 URL |
[54] | 王巍琦, 李变变, 张军, 等. 干旱区不同类型盐碱土壤细菌群落多样性[J]. 干旱区研究, 2019, 36(5):1202-1211. |
Wang WQ, Li BB, Zhang J, et al. Diversity of bacterium communities in saline or alkaline soil in arid area[J]. Arid Zone Research, 2019, 36(5):1202-1211. | |
[55] |
Liu K, Ding X, Tang X, et al. Macro and microelements drive diversity and composition of prokaryotic and fungal communities in hypersaline sediments and saline-alkaline soils[J]. Front Microbiol, 2018, 9:352.
doi: 10.3389/fmicb.2018.00352 URL |
[56] |
Steinauer K, Tilman D, Wragg PD, et al. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment[J]. Ecology, 2015, 96(1):99-112.
pmid: 26236895 |
[57] |
Chong CW, Pearce DA, Convey P, et al. High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Signy Island, Antarctica[J]. Soil Biol Biochem, 2010, 42(4):601-610.
doi: 10.1016/j.soilbio.2009.12.009 URL |
[58] |
Chu H, Neufeld JD, Walker VK, et al. The Influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low arctic tundra landscape[J]. Soil Sci Soc Am J, 2011, 75(5):1756-1765.
doi: 10.2136/sssaj2011.0057 URL |
[59] |
Yergeau E, Bokhorst S, Huiskes AHL, et al. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient[J]. FEMS Microbiol Ecol, 2007, 59(2):436-451.
doi: 10.1111/j.1574-6941.2006.00200.x URL |
[60] |
Philippot L, Raaijmakers J, Lemanceau P, et al. Going back to the roots:the microbial ecology of the rhizosphere[J]. Nat Rev Microbiol, 2013, 11(11):789-799.
doi: 10.1038/nrmicro3109 pmid: 24056930 |
[61] | Eisenhauer N, Lanoue A, Strecker T, et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass[J]. Scic Rep, 2017, 7:44641. |
[62] |
Lange M, Eisenhauer N, Sierra CA, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nat Commun, 2015, 6:6707.
doi: 10.1038/ncomms7707 URL |
[63] |
Zak DR, Holmes WE, White DC, et al. Plant diversity, soil microbial communities, and ecosystem function:Are there any links?[J]. Ecology, 2003, 84(8):2042-2050.
doi: 10.1890/02-0433 URL |
[64] |
Eisenhauer N, Barnes AD, Cesarz S, et al. Biodiversity-ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems[J]. J Veg Sci, 2016, 27(5):1061-1070.
doi: 10.1111/jvs.12435 URL |
[65] |
Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere:carbon trading at the soil-root interface[J]. Plant Soil, 2009, 321(1-2):5-33.
doi: 10.1007/s11104-009-9925-0 URL |
[66] |
Boone RD, Nadelhoffer KJ. Roots exert a strong influence on the temperature sensitivityof soil respiration[J]. Nature, 1998, 396(6711):570-572.
doi: 10.1038/25119 URL |
[67] |
Meier IC, Avis PG, Phillips RP. Fungal communities influence root exudation rates in pine seedlings[J]. FEMS Microbiol Ecol, 2013, 83(3):585-595.
doi: 10.1111/1574-6941.12016 pmid: 23013386 |
[68] | Barthlott W, Biedinger N, Braun G, et al. Terminological and methodological aspects of the mapping and analysis of the global biodiversity(Article)[J]. Acta Botanica Fennica, 1999, 162(162):103-110. |
[69] |
Wang J, Wang Y, He N, et al. Plant functional traits regulate soil bacterial diversity across temperate deserts[J]. Sci Total Environ, 2020, 715:136976.
doi: 10.1016/j.scitotenv.2020.136976 URL |
[70] |
Eisenhauer N, Yee K, Johnson EA, et al. Positive relationship between herbaceous layer diversity and the performance of soil biota in a temperate forest[J]. Soil Biol Biochem, 2011, 43(2):462-465.
doi: 10.1016/j.soilbio.2010.10.018 URL |
[71] |
Prober SM, Leff JW, Bates ST. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[J]. Ecol lett, 2015, 18(1):85-95.
doi: 10.1111/ele.2014.18.issue-1 URL |
[72] |
Grace JB, Anderson TM, Seabloom EW, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness[J]. Nature, 2016, 529(7586):390-393.
doi: 10.1038/nature16524 URL |
[73] |
Grossman JM, O’Neill BE, Tsai SM, et al. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy[J]. Microb Ecol, 2010, 60(1):192-205.
doi: 10.1007/s00248-010-9689-3 pmid: 20574826 |
[74] |
Zhao W, Zhou Q, Tian Z, et al. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain[J]. Sci Total Environ, 2020, 722:137428.
doi: 10.1016/j.scitotenv.2020.137428 URL |
[75] |
Tang J, Zhang S, Zhang X, et al. Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L. -derived biochar in coastal saline-alkali soil[J]. Sci Total Environ, 2020, 731:138938.
doi: 10.1016/j.scitotenv.2020.138938 URL |
[76] | 吴丹, 孙萍, 路鹏展, 等. 浒苔生物炭对滨海盐碱土壤改良的效果及途径[J]. 环境科学, 2020(4):1941-1949. |
Wu D, Sun P, Lu PZ, et al. Effect and approach of enteromorpha prolifera biochar to improve coastal saline soil[J]. Environmental Science, 2020(4):1941-1949. | |
[77] |
Zheng H, Wang X, Luo X, et al. Biochar_induced negative carbon mineralization priming effects in a coastal wetland soil:Roles of soil aggregation and microbial modulation[J]. Sci Total Environ, 2018, 610-611:951-960.
doi: 10.1016/j.scitotenv.2017.08.166 URL |
[78] |
Kuzyakov Y. Priming effects:Interactions between living and dead organic matter[J]. Soil Biol Biochem, 2010, 42(9):1363-1371.
doi: 10.1016/j.soilbio.2010.04.003 URL |
[79] |
Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria and their role in plant growth promotion:a review[J]. Ann Microbiol, 2010, 60(4):579-598.
doi: 10.1007/s13213-010-0117-1 URL |
[80] |
Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria[J]. Annu Rev Microbiol, 2009, 63:541-556.
doi: 10.1146/annurev.micro.62.081307.162918 pmid: 19575558 |
[81] |
Tiwari S, Singh P, Tiwari R, et al. Salt-tolerant rhizobacteria-mediated induced tolerance in wheat(Triticum aestivum)and chemical diversity in rhizosphere enhance plant growth[J]. Biol Fert Soils, 2011, 47(8):907-916.
doi: 10.1007/s00374-011-0598-5 URL |
[82] |
Shrivastava P, Kumar R. Soil salinity:A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi J Biol Sci, 2015, 22(2):123-131.
doi: 10.1016/j.sjbs.2014.12.001 pmid: 25737642 |
[83] |
Barnawal D, Bharti N, Pandey SS, et al. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression[J]. Physiol Plantarum, 2017, 161(4):502-514.
doi: 10.1111/ppl.2017.161.issue-4 URL |
[84] | 柴晓彤, 顾金凤, 毛亮, 等. 微生物菌肥对盐渍化土壤中盐分离子及有机质含量的影响[J]. 上海交通大学学报:农业科学版, 2017, 35(1):78-84. |
Chai XT, Gu JF, Mao L, et al. Effects of microbial fertilizer on contents of salt ions and organic matter in saline soil[J]. Journal of Shanghai Jiaotong University:Agricultural Science, 2017, 35(1):78-84. | |
[85] | 卢培娜, 刘景辉, 赵宝平, 等. 菌肥对盐碱地土壤特性及燕麦根系分泌物的影响[J]. 作物杂志, 2017(5):85-92. |
Lu PN, Liu JH, Zhao BP, et al. Effects of microbial fertilizer on soil characteristics and root exudates of oats in saline-alkali land[J]. Crops, 2017(5):85-92. | |
[86] | 朱浩, 刘珂欣, 刘维维, 等. 极端耐盐碱菌株的筛选及其菌肥对盐碱条件下小麦生长和土壤环境的影响[J]. 应用生态学报, 2019, 30(7):2338-2344. |
Zhu H, Liu Kx, Liu WW, et al. Screening of extreme salt-alkali tolerant strain and effect of its fertilizer on wheat growth and soil environment under saline-alkali condition[J]. Chinese Journal of Applied Ecology, 2019, 30(7):2338-2344. | |
[87] | 孙雪, 董永华, 王娜, 等. 耐盐碱促生菌的筛选及性能[J]. 生物工程学报, 2020, 36(9):1-9. |
Sun X, Dong YH, Wang N, et al. Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria[J]. Chinese Journal of Biotechnology, 2020, 36(9):1-9. | |
[88] |
Wang C, Zhao D, Qi G, et al. Effects of Bacillus velezensis FKM10 for promoting the growth of malus hupehensis rehd. and inhibiting Fusarium verticillioides[J]. Front Microbiol, 2020, 10:2889.
doi: 10.3389/fmicb.2019.02889 URL |
[89] | 康贻军, 胡健, 杨小兰, 等. 盐碱地土壤微生物对不同改良方法的响应[J]. 微生物学杂志, 2008(5):102-105. |
Kang YJ, Hu J, Yang XL, et al. Responses of saline-alkali soil microorganisms to different ameliorative methods[J]. Journal of Microbiology, 2008(5):102-105. | |
[90] |
Jiang SQ, Yu YN, Gao RW, et al. High-throughput absolute quantification sequencing reveals the effect of different fertilizer applications on bacterial community in a tomato cultivated coastal saline soil[J]. Science of the Total Environment, 2019, 687:601-609.
doi: 10.1016/j.scitotenv.2019.06.105 URL |
[91] |
Dangi SR, Stahl PD, Wick AF, et al. Soil microbial community recovery in reclaimed soils on a surface coal mine site[J]. Soil Sci Soc Am J, 2012, 76(3):915-924.
doi: 10.2136/sssaj2011.0288 URL |
[92] |
Graham DW, Smith VH. Designed ecosystem services:Application of ecological principles in wastewater treatment engineering[J]. Front Ecol Environ, 2004, 2(4):199-206.
doi: 10.1890/1540-9295(2004)002[0199:DESAOE]2.0.CO;2 URL |
[93] |
Rivett DW, Thomas B. Abundance determines the functional role of bacterial phylotypes in complex communities[J]. Nat Microbiol, 2018, 3(7):767-772.
doi: 10.1038/s41564-018-0180-0 URL |
[1] | YAN Hui-lin, LU Guang-xin, DENG Ye, GU Song-song, YAN Cheng-liang, MA Kun, ZHAO Yang-an, ZHANG Hai-juan, WANG Ying-cheng, ZHOU Xue-li, DOU Sheng-yun. Effects of Rhizobium Seed Dressing on the Soil Microbial Community of Grass-legume Mixtures in Alpine Regions [J]. Biotechnology Bulletin, 2022, 38(10): 204-215. |
[2] | XIN Ya-fen, CHEN Chen, ZENG Tai-ru, DU Zhao-chang, NI Hao-ran, ZHONG Yi-hao, TAN Xiao-ping, YAN Yan-hong. Research Progress in the Effects of Additives to Silage on Microbial Diversity [J]. Biotechnology Bulletin, 2021, 37(9): 24-30. |
[3] | WANG Ting, YANG Yang, LI Jin-ping, DU Kun. Research Progress in the Effects of Genetically Modified Crops on Soil Microbial Community [J]. Biotechnology Bulletin, 2021, 37(9): 255-265. |
[4] | ZHANG Ying-chao, YIN Shou-liang, WANG Yi-wei, WANG Xue-kai, YANG Fu-yu. Research Progress in Woody Forage Silage [J]. Biotechnology Bulletin, 2021, 37(9): 48-57. |
[5] | JIANG Fu-gui, CHENG Hai-jian, WEI Chen, ZHANG Zhao-kun, SU Wen-zheng, SHI Guang, SONG En-liang. Effects of Addition Amount of Molasses on the Fermentation Quality and Microbial Diversity of Hybrid Broussonetia papyrifera L. Vent Silage [J]. Biotechnology Bulletin, 2021, 37(9): 68-76. |
[6] | QIAO Zi-peng, WANG Qi-zhi, YANG Dao-mao, RUAN Li-ping. Research Progress in Fungi-mediated Biosynthesis of Sliver Nanoparticles [J]. Biotechnology Bulletin, 2021, 37(3): 185-197. |
[7] | HUANG Ting, FANG Yuan, FENG Zhou, SHEN He, NIE Yong, ZHENG Xin, WANG Jia-quan, XU Zi-mu. Bacterial Communities in a Middle School Campus Assessed by High-throughput Sequencing [J]. Biotechnology Bulletin, 2020, 36(8): 96-103. |
[8] | XIE Xian, LIANG Jun, ZHANG Ming, HU Rui-rui, CHENG Yuan, ZHANG Xing-yao. Endophytic Fungi Diversity in the Needles of Pinus densiflora with Sphaeropsis sapinea [J]. Biotechnology Bulletin, 2020, 36(2): 119-125. |
[9] | KANG Jie, ZHANG Shu-yan, HAN Tao, SUN Zhi-mei. Microbial Diversity and Community Structure Characteristics of Yam Rhizosphere Soil at Different Development Periods [J]. Biotechnology Bulletin, 2019, 35(9): 99-106. |
[10] | KANG Jie,ZHANG Shu-yan, HAN Tao,SUN Zhi-mei, LUO Tong-yang. Research on Rhizosphere Soil Microbial Diversity of Two Typical Kinds of Disease in Yam [J]. Biotechnology Bulletin, 2017, 33(7): 107-113. |
[11] | GAO Xiu-zhi ,YI Xin-xin, LIU Hui ,WANG Xiao-dong ,CUI Zong-jun. Microbial Diversity of Traditional Soybean Paste During Fermentation in Northeastern China [J]. Biotechnology Bulletin, 2016, 32(4): 251-255. |
[12] | Wu Yanyan, Qian Xixi, Li Laihao, Yang Xianqing, Ma Haixia. Research Progress on Diversity of Microbial Community During the Pickled Processing of Salted Fish Products [J]. Biotechnology Bulletin, 2015, 31(7): 40-44. |
[13] | Feng Xuezhen, Wu Shanguang, Lu Yuan. Preliminary Application of PCR-DGGE to Analyzing Microbial Diversity of Ulva lactuca L. and Dictyota dichotoma [J]. Biotechnology Bulletin, 2014, 0(12): 73-77. |
[14] | Wang Bei Niu Shiquan Da Wenyan Li Haiyun Hu Jiaolong Zhao Guojie. Screening of Actinomyces on Antagonism to Rhizoctonia solani Isolated from Saline-alkali Soils in Hexi Corridor [J]. Biotechnology Bulletin, 2014, 0(1): 156-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||