Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (10): 216-224.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0244
Previous Articles Next Articles
Received:
2021-03-03
Online:
2021-10-26
Published:
2021-11-12
Contact:
LIU Yong-bo
E-mail:dengpurong1998@163.com;liuyb@craes.org.cn
DENG Pu-rong, LIU Yong-bo. Review on the Synergistic Insect-resistant Application of RNAi and Bt-transgenic Technologies[J]. Biotechnology Bulletin, 2021, 37(10): 216-224.
物种 Species | 目标基因 Target gene | Bt蛋白基因 Bt gene | 联合作效率 Synergistic efficiency | 参考文献Reference |
---|---|---|---|---|
马铃薯甲虫 Leptinotarsa decemlineata | prohibitin-1 | Cry3Aa | 死亡 Mortality | [56] |
海灰翅夜蛾 Spodoptera littoralis | Sl102 | Cry1Ca | 免疫力下降 Down-regulation of immunocompetence | [57] |
亚洲玉米螟 Ostrinia furnacalis | chymotrypsin-like genes | Cry1Ab | 死亡率显著升高 Significantly increased mortalities | [60] |
甜菜夜蛾 Spodoptera exigua | CHS-B | Cry1Ac 和Cry1Ca | 死亡 Mortality | [61] |
棉铃虫 Helicoverpa armigera | JHAMT和JHBP | Cry1Ac | 死亡 Mortality | [6] |
棉铃虫 Helicoverpa armigera | v-ATPase-A | Cry1Ac | 体重抑制率显著升高,对Cry1Ac更敏感 Higher weight inhibition,more sensitive to Cry1Ac | [62] |
Table 1 Synergistic application of RNAi and Bt-transgenic technologies in controlling pests
物种 Species | 目标基因 Target gene | Bt蛋白基因 Bt gene | 联合作效率 Synergistic efficiency | 参考文献Reference |
---|---|---|---|---|
马铃薯甲虫 Leptinotarsa decemlineata | prohibitin-1 | Cry3Aa | 死亡 Mortality | [56] |
海灰翅夜蛾 Spodoptera littoralis | Sl102 | Cry1Ca | 免疫力下降 Down-regulation of immunocompetence | [57] |
亚洲玉米螟 Ostrinia furnacalis | chymotrypsin-like genes | Cry1Ab | 死亡率显著升高 Significantly increased mortalities | [60] |
甜菜夜蛾 Spodoptera exigua | CHS-B | Cry1Ac 和Cry1Ca | 死亡 Mortality | [61] |
棉铃虫 Helicoverpa armigera | JHAMT和JHBP | Cry1Ac | 死亡 Mortality | [6] |
棉铃虫 Helicoverpa armigera | v-ATPase-A | Cry1Ac | 体重抑制率显著升高,对Cry1Ac更敏感 Higher weight inhibition,more sensitive to Cry1Ac | [62] |
干扰途径 RNAi approach | 植物 Plant | 昆虫 Insect | 目标基因 Target gene | 参考文献 Reference |
---|---|---|---|---|
宿主诱导的基因沉默 HIGS | 玉米和大豆 Zea mays and Glycine max | 绿盲蝽 Apolygus lucorum | V-ATPase-E | [39] |
本氏烟 Nicotiana benthamiana | 桃蚜 Myzus persicae | MpC002 and Rack-1 | [36] | |
拟南芥 Arabidopsis thaliana | 桃蚜 Myzus persicae | MySP | [44] | |
烟草 Nicotiana tabacum | 烟粉虱 Bemisia tabaci | acetylcholinesterase(AChE) ecdysone receptor(EcR) | [37] | |
小麦 Triticum aestivum | 麦长管蚜 Sitobion avenae | zinc finger(SaZFP) | [40] | |
马铃薯 Solanum tuberosum | 马铃薯甲虫 Leptinotarsa decemlineata | EcR | [38] | |
拟南芥 Arabidopsis thaliana 烟草 Nicotiana tabacum | 棉铃虫 Helicoverpa armigera | CYP6AE14 | [41] | |
拟南芥 Arabidopsis thaliana | 棉铃虫 Helicoverpa armigera | mitochondrial complex I(NDUFV2) | [19] | |
饲喂法 Dietary feeding | 豌豆蚜 Acyrthosiphon pisum | ApAQP1 | [76] | |
显微注射法 Microinjection | 黄曲条跳甲 Phyllotreta striolata | odorant receptor(PsOr1) | [77] | |
德国小蠊 Blattella germanica | RXR | [22] | ||
微生物介导 Bacterial expression and oral delivery | 粘虫 Mythimna separata | MseChi | [15] | |
亚洲玉米螟 Ostrinia furnacalis | Glutathione-S-Transferase | [78] |
Table 2 RNAi technology applied in controlling agricultural pests
干扰途径 RNAi approach | 植物 Plant | 昆虫 Insect | 目标基因 Target gene | 参考文献 Reference |
---|---|---|---|---|
宿主诱导的基因沉默 HIGS | 玉米和大豆 Zea mays and Glycine max | 绿盲蝽 Apolygus lucorum | V-ATPase-E | [39] |
本氏烟 Nicotiana benthamiana | 桃蚜 Myzus persicae | MpC002 and Rack-1 | [36] | |
拟南芥 Arabidopsis thaliana | 桃蚜 Myzus persicae | MySP | [44] | |
烟草 Nicotiana tabacum | 烟粉虱 Bemisia tabaci | acetylcholinesterase(AChE) ecdysone receptor(EcR) | [37] | |
小麦 Triticum aestivum | 麦长管蚜 Sitobion avenae | zinc finger(SaZFP) | [40] | |
马铃薯 Solanum tuberosum | 马铃薯甲虫 Leptinotarsa decemlineata | EcR | [38] | |
拟南芥 Arabidopsis thaliana 烟草 Nicotiana tabacum | 棉铃虫 Helicoverpa armigera | CYP6AE14 | [41] | |
拟南芥 Arabidopsis thaliana | 棉铃虫 Helicoverpa armigera | mitochondrial complex I(NDUFV2) | [19] | |
饲喂法 Dietary feeding | 豌豆蚜 Acyrthosiphon pisum | ApAQP1 | [76] | |
显微注射法 Microinjection | 黄曲条跳甲 Phyllotreta striolata | odorant receptor(PsOr1) | [77] | |
德国小蠊 Blattella germanica | RXR | [22] | ||
微生物介导 Bacterial expression and oral delivery | 粘虫 Mythimna separata | MseChi | [15] | |
亚洲玉米螟 Ostrinia furnacalis | Glutathione-S-Transferase | [78] |
[1] |
Liu Y, Pan X, Li J. A 1961-2010 record of fertilizer use, pesticide application and cereal yields:a review[J]. Agron Sustain Dev, 2015, 35(1):83-93.
doi: 10.1007/s13593-014-0259-9 URL |
[2] |
Klümper W, Qaim M. A meta-analysis of the impacts of genetically modified crops[J]. PLoS One, 2014, 9(11):e111629.
doi: 10.1371/journal.pone.0111629 URL |
[3] |
Li Y, Hallerman EM, Wu K, et al. Insect-resistant genetically engineered crops in China:development, application, and prospects for use[J]. Annu Rev Entomol, 2020, 65(1):273-292.
doi: 10.1146/ento.2020.65.issue-1 URL |
[4] |
Jin L, Zhang H, Lu Y, et al. Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops[J]. Nat Biotechnol, 2015, 33(2):169-174.
doi: 10.1038/nbt.3100 URL |
[5] |
Majumder S, Sarkar C, Saha P, et al. Bt jute expressing fused δ-endotoxin Cry1Ab/Ac for resistance to Lepidopteran pests[J]. Front Plant Sci, 2017, 8:2188.
doi: 10.3389/fpls.2017.02188 URL |
[6] |
Ni M, Ma W, Wang X, et al. Next-generation transgenic cotton:pyramiding RNAi and Bt counters insect resistance[J]. Plant Biotechnol J, 2017, 15(9):1204-1213.
doi: 10.1111/pbi.2017.15.issue-9 URL |
[7] |
Levine SL, Tan J, Mueller GM, et al. Independent action between DvSnf7 RNA and Cry3Bb1 protein in southern corn rootworm, Diabrotica undecimpunctata howardi and Colorado potato beetle, Leptinotarsa decemlineata[J]. PLoS One, 2015, 10(3):e0118622.
doi: 10.1371/journal.pone.0118622 URL |
[8] |
Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669):806-811.
doi: 10.1038/35888 URL |
[9] | Joga MR, Zotti MJ, Smagghe G, et al. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control:what we know so far[J]. Front Physiol, 2016, 7:553. |
[10] |
Yu X, Liu Z, Huang S, et al. RNAi-mediated plant protection against aphids[J]. Pest Manag Sci, 2016, 72(6):1090-1098.
doi: 10.1002/ps.2016.72.issue-6 URL |
[11] |
Huvenne H, Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control:a review[J]. J Insect Physiol, 2010, 56(3):227-235.
doi: 10.1016/j.jinsphys.2009.10.004 URL |
[12] |
Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1[J]. Science, 2003, 301(5639):1545-1547.
pmid: 12970568 |
[13] |
Dong X, Li X, Li Q, et al. The inducible blockage of RNAi reveals a role for polyunsaturated fatty acids in the regulation of dsRNA-endocytic capacity in Bactrocera dorsalis[J]. Sci Rep, 2017, 7(1):5584.
doi: 10.1038/s41598-017-05971-0 URL |
[14] |
Saleh MC, van Rij RP, Hekele A, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing[J]. Nat Cell Biol, 2006, 8(8):793-802.
doi: 10.1038/ncb1439 URL |
[15] |
Ganbaatar O, Cao B, Zhang Y, et al. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors[J]. BMC Biotechnol, 2017, 17(1):1-11.
doi: 10.1186/s12896-016-0323-4 URL |
[16] | Cao M, Gatehouse JA, Fitches EC. A systematic study of RNAi effects and dsRNA stability in Tribolium castaneum and Acyrthosiphon pisum, following injection and ingestion of analogous dsRNAs[J]. Int J Mol Sci, 2018, 19(4):E1079. |
[17] |
Suzuki Y, Truman JW, Riddiford LM. The role of Broad in the development of Tribolium castaneum:implications for the evolution of the holometabolous insect Pupa[J]. Development, 2008, 135(3):569-577.
doi: 10.1242/dev.015263 URL |
[18] |
Gong L, Yang X, Zhang B, et al. Silencing of Rieske iron-sulfur protein using chemically synjournaled siRNA as a potential biopesticide against Plutella xylostella[J]. Pest Manag Sci, 2011, 67(5):514-520.
doi: 10.1002/ps.2086 URL |
[19] |
Wu X, Yang C, Mao Y, et al. Targeting insect mitochondrial complex I for plant protection[J]. Plant Biotechnol J, 2016, 14(9):1925-1935.
doi: 10.1111/pbi.2016.14.issue-9 URL |
[20] | Ullah F, Gul H, Wang X, et al. RNAi-mediated knockdown of chitin synthase 1(CHS1)gene causes mortality and decreased longevity and fecundity in Aphis gossypii[J]. Insects, 2019, 11(1):E22. |
[21] | Ahn SJ, Donahue K, Koh Y, et al. Microbial-based double-stranded RNA production to develop cost-effective RNA interference application for insect pest management[J]. Int J Insect Sci, 2019, 11:1179543319840323. |
[22] |
Martín D, Maestro O, Cruz J, et al. RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica[J]. J Insect Physiol, 2006, 52(4):410-416.
pmid: 16427073 |
[23] |
Yang Y, Jittayasothorn Y, Chronis D, et al. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots[J]. PLoS One, 2013, 8(7):e69463.
doi: 10.1371/journal.pone.0069463 URL |
[24] |
Kwon DH, Park JH, Lee SH. Screening of lethal genes for feeding RNAi by leaf disc-mediated systematic delivery of dsRNA in Tetranychus urticae[J]. Pestic Biochem Physiol, 2013, 105(1):69-75.
doi: 10.1016/j.pestbp.2012.12.001 URL |
[25] | 王治文, 高翔, 马德君, 等. 核酸农药—极具潜力的新型植物保护产品[J]. 农药学学报, 2019, 21(Z1):681-691. |
Wang ZW, Gao X, Ma DJ, et al. Nucleic acid pesticides—the new plant protection products with great potential[J]. Chin J Pestic Sci, 2019, 21(Z1):681-691. | |
[26] |
Wang Y, Zhang H, Li H, et al. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control[J]. PLoS One, 2011, 6(4):e18644.
doi: 10.1371/journal.pone.0018644 URL |
[27] |
San Miguel K, Scott JG. The next generation of insecticides:dsRNA is stable as a foliar-applied insecticide[J]. Pest Manag Sci, 2016, 72(4):801-809.
doi: 10.1002/ps.4056 pmid: 26097110 |
[28] |
Li H, Guan R, Guo H, et al. New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests[J]. Plant Cell Environ, 2015, 38(11):2277-2285.
doi: 10.1111/pce.12546 URL |
[29] |
Dubelman S, Fischer J, Zapata F, et al. Environmental fate of double-stranded RNA in agricultural soils[J]. PLoS One, 2014, 9(3):e93155.
doi: 10.1371/journal.pone.0093155 URL |
[30] |
Fischer JR, Zapata F, Dubelman S, et al. Aquatic fate of a double-stranded RNA in a sediment-water system following an over-water application[J]. Environ Toxicol Chem, 2017, 36(3):727-734.
doi: 10.1002/etc.3585 pmid: 27530554 |
[31] | 胡少茹, 关若冰, 李海超, 等. RNAi在害虫防治中应用的重要进展及存在问题[J]. 昆虫学报, 2019, 62(4):506-515. |
Hu SR, Guan RB, Li HC, et al. Application of RNAi in insect pest management:important progress and problems[J]. Acta Entomol Sin, 2019, 62(4):506-515. | |
[32] | Palli SR. RNA interference in Colorado potato beetle:steps toward development of dsRNA as a commercial insecticide[J]. Curr Opin Insect Sci, 2014, 6:1-8. |
[33] | Huang J, Liu Y, Lin Y, et al. Practical use of RNA interference:oral delivery of double-stranded RNA in liposome carriers for cockroaches[J]. J Vis Exp, 2018(135). |
[34] |
Zhang H, Zhang H, Demirer GS, et al. Engineering DNA nanostructures for siRNA delivery in plants[J]. Nat Protoc, 2020, 15(9):3064-3087.
doi: 10.1038/s41596-020-0370-0 pmid: 32807907 |
[35] | 张河山, 胡亚亚, 张娜, 等. 寄主诱导的基因沉默(HIGS)技术研究进展[J]. 农业生物技术学报, 2013, 21(5):603-611. |
Zhang HS, Hu YY, Zhang N, et al. Progress of host-induced gene silencing(HIGS)technology[J]. J Agric Biotechnol, 2013, 21(5):603-611. | |
[36] |
Pitino M, Coleman AD, Maffei ME, et al. Silencing of aphid genes by dsRNA feeding from plants[J]. PLoS One, 2011, 6(10):e25709.
doi: 10.1371/journal.pone.0025709 URL |
[37] |
Malik HJ, Raza A, Amin I, et al. RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants[J]. Sci Rep, 2016, 6:38469.
doi: 10.1038/srep38469 URL |
[38] |
Hussain T, Aksoy E, Çalışkan ME, et al. Transgenic potato lines expressing hairpin RNAi construct of molting-associated EcR gene exhibit enhanced resistance against Colorado potato beetle(Leptinotarsa decemlineata, Say)[J]. Transgenic Res, 2019, 28(1):151-164.
doi: 10.1007/s11248-018-0109-7 pmid: 30607744 |
[39] |
Liu F, Yang B, Zhang A, et al. Plant-mediated RNAi for controlling Apolygus lucorum[J]. Front Plant Sci, 2019, 10:64.
doi: 10.3389/fpls.2019.00064 URL |
[40] |
Sun Y, Sparks C, Jones H, et al. Silencing an essential gene involved in infestation and digestion in grain aphid through plant-mediated RNA interference generates aphid-resistant wheat plants[J]. Plant Biotechnol J, 2019, 17(5):852-854.
doi: 10.1111/pbi.2019.17.issue-5 URL |
[41] |
Mao Y, Cai W, Wang J, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J]. Nat Biotechnol, 2007, 25(11):1307-1313.
doi: 10.1038/nbt1352 URL |
[42] |
Baum JA, Bogaert T, Clinton W, et al. Control of coleopteran insect pests through RNA interference[J]. Nat Biotechnol, 2007, 25(11):1322-1326.
doi: 10.1038/nbt1359 URL |
[43] |
Zhang M, Zhou Y, Wang H, et al. Ident ifying potential RNAi targets in grain aphid(Sitobion avenae F. )based on transcriptome profiling of its alimentary canal after feeding on wheat plants[J]. BMC Genom, 2013, 14(1):560.
doi: 10.1186/1471-2164-14-560 URL |
[44] |
Bhatia V, Bhattacharya R, Uniyal PL, et al. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae[J]. PLoS One, 2012, 7(10):e46343.
doi: 10.1371/journal.pone.0046343 URL |
[45] |
Li H, Khajuria C, Rangasamy M, et al. Long dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and adults[J]. J Appl Entomol, 2015, 139(6):432-445.
doi: 10.1111/jen.12224 URL |
[46] |
Mamta, Reddy KRK, Rajam MV. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato[J]. Plant Mol Biol, 2016, 90(3):281-292.
doi: 10.1007/s11103-015-0414-y pmid: 26659592 |
[47] |
Camargo RA, Barbosa GO, Possignolo IP, et al. RNA interference as a gene silencing tool to control Tuta absoluta in tomato(Solanum lycopersicum)[J]. PeerJ, 2016, 4:e2673.
doi: 10.7717/peerj.2673 URL |
[48] |
Whyard S. Insecticidal RNA, the long and short of it[J]. Science, 2015, 347(6225):950-951.
doi: 10.1126/science.aaa7722 pmid: 25722399 |
[49] |
Ghodke AB, Good RT, Golz JF, et al. Extracellular endonucleases in the midgut of Myzus persicae may limit the efficacy of orally delivered RNAi[J]. Sci Rep, 2019, 9(1):11898.
doi: 10.1038/s41598-019-47357-4 URL |
[50] |
Bally J, Fishilevich E, Bowling AJ, et al. Improved insect-proofing:expressing double-stranded RNA in chloroplasts[J]. Pest Manag Sci, 2018, 74(8):1751-1758.
doi: 10.1002/ps.2018.74.issue-8 URL |
[51] | Bally J, McIntyre GJ, Doran RL, et al. In-Plant Protection against Helicoverpa armigera by Production of Long hpRNA in Chloroplasts[J]. Front Plant Sci, 2016, 7:1453. |
[52] |
Zhang J, Khan SA, Hasse C, et al. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids[J]. Science, 2015, 347(6225):991-994.
doi: 10.1126/science.1261680 URL |
[53] | Zhu X, Zhu Y. Proceeding in plant anti-insect genetic engineering[J]. Acta Bot Sin, 1997, 39(3):282-288. |
[54] |
Rajagopal R, Arora N, Sivakumar S, et al. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin[J]. Biochem J, 2009, 419(2):309-316.
doi: 10.1042/BJ20081152 pmid: 19146482 |
[55] |
Gong L, Kang S, Zhou J, et al. Reduced expression of a novel midgut trypsin gene involved in protoxin activation correlates with Cry1Ac resistance in a laboratory-selected strain of Plutella xylostella(L.)[J]. Toxins, 2020, 12(2):76.
doi: 10.3390/toxins12020076 URL |
[56] |
Wang L, Ma Y, Wan P, et al. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China[J]. Insect Biochem Mol Biol, 2018, 94:28-35.
doi: 10.1016/j.ibmb.2018.01.004 URL |
[57] |
Pan Z, Xu L, Liu B, et al. PxAPN5 serves as a functional receptor of Cry2Ab in Plutella xylostella(L.)and its binding domain analysis[J]. Int J Biol Macromol, 2017, 105(pt 1):516-521.
doi: 10.1016/j.ijbiomac.2017.07.070 URL |
[58] |
Mathew LG, Ponnuraj J, Mallappa B, et al. ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory-and field-selected pink bollworm[J]. Sci Rep, 2018, 8(1):13531.
doi: 10.1038/s41598-018-31840-5 URL |
[59] |
Guo Z, Kang S, Chen D, et al. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth[J]. PLoS Genet, 2015, 11(4):e1005124.
doi: 10.1371/journal.pgen.1005124 URL |
[60] |
Ayra-Pardo C, Raymond B, Gulzar A, et al. Novel genetic factors involved in resistance to Bacillus thuringiensis in Plutella xylostella[J]. Insect Mol Biol, 2015, 24(6):589-600.
doi: 10.1111/imb.12186 pmid: 26335439 |
[61] | 韩兰芝, 侯茂林, 吴孔明, 等. 转Cry1Ac+CpTI基因水稻对大螟的致死和亚致死效应[J]. 中国农业科学, 2009, 42(2):523-531. |
Han LZ, Hou ML, Wu KM, et al. Lethal and sub-lethal effects of transgenic rice containing Cry1Ac and CpTI genes on the pink stem borer[J]. Sci Agric Sin, 2009, 42(2):523-531. | |
[62] | 杨召军, 郎志宏, 张杰, 等. 转Bt Cry1Ah/Cry1Ie双价基因抗虫玉米的研究[J]. 中国农业科技导报, 2012, 14(4):39-45. |
Yang ZJ, Lang ZH, Zhang J, et al. Studies on insect-resistant transgenic maize(Zea mays L.)harboring Bt Cry1Ah and Cry1Ie genes[J]. J Agric Sci Technol, 2012, 14(4):39-45. | |
[63] |
Xu C, Cheng J, Lin H, et al. Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance[J]. Sci Rep, 2018, 8(1):15788.
doi: 10.1038/s41598-018-34104-4 URL |
[64] | 张谦, 郭芳, 梁革梅, 等. 转基因棉花主要靶标害虫的抗性发展及抗性治理策略研究[J]. 环境昆虫学报, 2010, 32(2):256-263. |
Zhang Q, Guo F, Liang GM, et al. Research progress of the development of resistance of target insects and resistance management strategy[J]. J Environ Entomol, 2010, 32(2):256-263.
doi: 10.1603/0046-225X-32.2.256 URL |
|
[65] |
Kota M, Daniell H, Varma S, et al. Overexpression of the Bacillus thuringiensis(Bt)Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects[J]. PNAS, 1999, 96(5):1840-1845.
pmid: 10051556 |
[66] |
Zhong Y, Ahmed S, Deng G, et al. Improved insect resistance against Spodoptera litura in transgenic sweetpotato by overexpressing Cry1Aa toxin[J]. Plant Cell Rep, 2019, 38(11):1439-1448.
doi: 10.1007/s00299-019-02460-8 URL |
[67] |
Bolognesi R, Ramaseshadri P, Anderson J, et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm(Diabrotica virgifera virgifera LeConte)[J]. PLoS One, 2012, 7(10):e47534.
doi: 10.1371/journal.pone.0047534 URL |
[68] |
Head GP, Carroll MW, Evans SP, et al. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm:efficacy and resistance management[J]. Pest Manag Sci, 2017, 73(9):1883-1899.
doi: 10.1002/ps.2017.73.issue-9 URL |
[69] |
Guan R, Li H, Miao X. RNAi pest control and enhanced BT insecticidal efficiency achieved by dsRNA of chymotrypsin-like genes in Ostrinia furnacalis[J]. J Pest Sci, 2017, 90(2):745-757.
doi: 10.1007/s10340-016-0797-9 URL |
[70] |
Kim HS, Noh S, Park Y. Enhancement of Bacillus thuringiensis Cry1Ac and Cry1Ca toxicity against Spodoptera exigua(Hübner)by suppression of a chitin synthase B gene in midgut[J]. J Asia Pac Entomol, 2017, 20(1):199-205.
doi: 10.1016/j.aspen.2016.12.015 URL |
[71] | 钟丰. 棉铃虫V-ATP酶A亚基在Cry1Ac杀虫及抗性演化中的作用研究[D]. 北京:中国农业科学院, 2015. |
Zhong F. Functional analysis of the V-ATPase subuint A involved in the Cry1ac toxicity and resistance revolution in Helicoverpa armigera(hübner)[D]. Beijing:Chinese Academy of Agricultural Sciences, 2015. | |
[72] |
Hwang J, Kim Y. RNA interference of an antimicrobial peptide, gloverin, of the beet armyworm, Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis[J]. J Invertebr Pathol, 2011, 108(3):194-200.
doi: 10.1016/j.jip.2011.09.003 URL |
[73] |
Ochoa-Campuzano C, Martínez-Ramírez AC, Contreras E, et al. Prohibitin, an essential protein for Colorado potato beetle larval viability, is relevant to Bacillus thuringiensis Cry3Aa toxicity[J]. Pestic Biochem Physiol, 2013, 107(3):299-308.
doi: 10.1016/j.pestbp.2013.09.001 pmid: 24267691 |
[74] |
Caccia S, Astarita F, Barra E, et al. Enhancement of Bacillus thuringiensis toxicity by feeding Spodoptera littoralis larvae with bacteria expressing immune suppressive dsRNA[J]. J Pest Sci, 2020, 93(1):303-314.
doi: 10.1007/s10340-019-01140-6 URL |
[75] |
Caccia S, Di Lelio I, La Storia A, et al. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism[J]. PNAS, 2016, 113(34):9486-9491.
doi: 10.1073/pnas.1521741113 URL |
[76] |
Shakesby AJ, Wallace IS, Isaacs HV, et al. A water-specific aquaporin involved in aphid osmoregulation[J]. Insect Biochem Mol Biol, 2009, 39(1):1-10.
doi: 10.1016/j.ibmb.2008.08.008 URL |
[77] |
Zhao Y, Liu F, Yang G, et al. PsOr1, a potential target for RNA interference-based pest management[J]. Insect Mol Biol, 2011, 20(1):97-104.
doi: 10.1111/j.1365-2583.2010.01049.x pmid: 20854479 |
[78] | Zhang Y, Zhang Y, Fu M, et al. RNA interference to control Asian corn borer using dsRNA from a novel glutathione-S-transferase gene of Ostrinia furnacalis(Lepidoptera:Crambidae)[J]. J Insect Sci, 2018, 18(5):16. |
[79] |
Mamta B, Rajam MV. RNAi technology:a new platform for crop pest control[J]. Physiol Mol Biol Plants, 2017, 23(3):487-501.
doi: 10.1007/s12298-017-0443-x URL |
[80] |
Scott JG, Michel K, Bartholomay LC, et al. Towards the elements of successful insect RNAi[J]. J Insect Physiol, 2013, 59(12):1212-1221.
doi: 10.1016/j.jinsphys.2013.08.014 URL |
[81] |
Asokan R, Sharath Chandra G, Manamohan M, et al. Response of various target genes to diet-delivered dsRNA mediated RNA interference in the cotton bollworm, Helicoverpa armigera[J]. J Pest Sci, 2014, 87(1):163-172.
doi: 10.1007/s10340-013-0541-7 URL |
[82] |
Jarosch A, Moritz RFA. RNA interference in honeybees:off-target effects caused by dsRNA[J]. Apidologie, 2012, 43(2):128-138.
doi: 10.1007/s13592-011-0092-y URL |
[83] | Allen ML. Comparison of RNAi sequences in insect-resistant plants to expressed sequences of a beneficial lady beetle:a closer look at off-target considerations[J]. Insects, 2017, 8(1):E27. |
[84] |
Gordon KH, Waterhouse PM. RNAi for insect-proof plants[J]. Nat Biotechnol, 2007, 25(11):1231-1232.
pmid: 17989682 |
[85] |
Khajuria C, Ivashuta S, Wiggins E, et al. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte[J]. PLoS One, 2018, 13(5):e0197059.
doi: 10.1371/journal.pone.0197059 URL |
[1] | XIE Wei, LIU Chun-ming. Commercialization of Biological Breeding in China: Opportunities and Policy Issues [J]. Biotechnology Bulletin, 2023, 39(1): 16-20. |
[2] | LIN Ying, YANG Wen-li, ZHOU Ling-yan, JIANG Da-gang. Research Progress in Agricultural Genetically Modified Nucleic Acid Reference Materials [J]. Biotechnology Bulletin, 2022, 38(8): 52-59. |
[3] | LIU Xiao-mei, WANG Dong-xin, ZHANG Chun, WEI Shuang-shi. Inhibition of AAV-mediated RNAi to SARS-CoV-2 S Gene Expression [J]. Biotechnology Bulletin, 2022, 38(3): 188-193. |
[4] | GUO Yu-fei, YAN Rong-mei, ZHANG Xiao-ru, CAO Wei, LIU Hao. Metabolic Engineering Modification of Aspergillus niger for the Production of D-glucaric Acid [J]. Biotechnology Bulletin, 2022, 38(11): 227-237. |
[5] | WANG Ting, YANG Yang, LI Jin-ping, DU Kun. Research Progress in the Effects of Genetically Modified Crops on Soil Microbial Community [J]. Biotechnology Bulletin, 2021, 37(9): 255-265. |
[6] | PAN Yin-lai, QIU Chun-hui, WANG Yi-lei, ZHANG Zi-ping. Development of RNA Drugs and Its Application in Aquaculture [J]. Biotechnology Bulletin, 2021, 37(2): 203-215. |
[7] | XU Xue-liang, WANG Fen-shan, LIU Zi-rong, FAN Lin-juan, JI Xiang-yun, JIANG Jie-xian, YAO Ying-juan. Research Progress of RNA Interference Technology in the Field of Entomology [J]. Biotechnology Bulletin, 2021, 37(1): 255-261. |
[8] | SU Jie, GUO Rong-qi, GAO Yang, YU Xiu-min, LI Guo-jing, WANG Rui-gang. Response to NaCl and ABA in Arabidopsis thaliana of the Double Silent Gene VHA-c2&c4 [J]. Biotechnology Bulletin, 2020, 36(7): 48-54. |
[9] | SONG Hua-li, SUN Xiao-ying, KONG Xiang-hui, LI Li, PEI Chao. Application of RNA Interference Technology in Antiviral and Antiparasitic Research of Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 193-205. |
[10] | ZHANG Ting-ting, TENG Li, CAI Xiao-yao, LONG Hui, LI Sheng-yu, LIU Hong-mei. Genomic Characterization of a Totiviridae from the Ustilaginoidea virens Strain GZ-14-07 [J]. Biotechnology Bulletin, 2020, 36(10): 80-87. |
[11] | HAN Cui-cui, LIU Li-kun, WANG Yu-chun, YANG Ying, LIU Ji-cheng, ZHOU Zhong-guang. Construction of TOX3 Gene Lentiviral RNA Interference Vector and Effect on Proliferation of Human Breast Cancer Cells ZR-75-1 [J]. Biotechnology Bulletin, 2019, 35(7): 141-147. |
[12] | WANG Jia-yue, LIU Xiang-nan, PENG Kang-li, ZHAO Bo. Construction and Identification of Lentiviral Vector for RNA Interference of USE1 Gene [J]. Biotechnology Bulletin, 2019, 35(3): 117-122. |
[13] | LIU Fang-fang, DONG Mei, LI Kai, WAN Yu-song, JIN Wu-jun, LI Liang. Global Status on Low Level Presence of Genetically Modified Crops [J]. Biotechnology Bulletin, 2017, 33(3): 1-5. |
[14] | WANG Wei-wei, LIU Ni, LU Qin, LING Xiao-fei, CHEN Hang. Latest Research Progress on RNA Interference Technology [J]. Biotechnology Bulletin, 2017, 33(11): 35-40. |
[15] | Su Zijing, Li Qiaoling, Huang Cheng, Xie Chengjian, Yang Xingyong. RNAi Technology and Its Application in Fungal Gene Functional Studies [J]. Biotechnology Bulletin, 2015, 31(8): 50-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||