Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (5): 197-211.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1258
Previous Articles Next Articles
LI Kai-qing1(), LI Ying2, WANG Yi-lei3, ZOU Peng-fei3()
Received:
2020-10-12
Online:
2021-05-26
Published:
2021-06-11
Contact:
ZOU Peng-fei
E-mail:1071450993@qq.com;pengfeizou@jmu.edu.cn
LI Kai-qing, LI Ying, WANG Yi-lei, ZOU Peng-fei. The Function of Receptor-interacting Protein(RIP)Kinases and the Research Progress in Teleost Fish[J]. Biotechnology Bulletin, 2021, 37(5): 197-211.
Fig. 1 Protein domain of mammalian RIP family members KD stands for kinase domain, RHIM stands for receptor-interacting-protein homotypic interaction motif, DD stands for death domain, CARD stands for caspase activation and recruitment domain, ANK stands for ankyrin repeat, Roc/CoR stands for ras complex protein/C-terminal of Roc, LRR leucine-rich repeat
Fig. 2 RIP1 and RIP3-mediated signaling pathways in mammals RIP1 is recruited via the adaptor protein TRADD to the TNFR1 upon the stimulation of TNF-α, and then activates NF-κB signaling pathway to mediate inflammation and initiates caspase-dependent cell apoptosis. The dsRNA and LPS could be recognized by TLR3 and TLR4, respectively, which then recruit the adaptor molecule TRIF to interact with RIP1, and then associate with TRAF6 to participate in the activation of downstream NF-κB signals, thereby inducing the transcription of pro-inflammatory cytokines. RIP1 mediates cell apoptosis by binding to FADD and caspase-8 to form a death complex. When the activity of caspase-8 is inhibited, the assembly of RIP1-RIP3-MLKL necrosomes mediates cell necrosis, and then RIP3 activates inflammasomes to mediate cell pyrotosis. LPS stands for Lipopolysaccharide. TNF-α stands for Tumor necrosis factor alpha. TNFR1 stands for TNF-receptor 1. TRADD stands for TNF-receptor-associated death domain. TRAF stands for TNF receptor associated factor. cIAPs stands for Cellular inhibitor of apoptosis proteins. FADD stands for Fas-associated death domain. NF-κB stands for Nuclear transcription factor-κB. TLR stands for Toll-like receptor. TRAM stands for TIR domain-containing adaptor-inducing IFNβ-related adaptor molecule. TRIF stands for TIR domain-containing adaptor-inducing IFNβ. NLRP3 stands for NOD-like receptor family pyrin domain containing 3. ASC stands for Apoptosis-associated speck-like protein containing CARD. IL-1 stands for Interleukin-1
Fig. 3 RIP2-mediated signaling pathways in mammals RIP2 is recruited and activated by NOD1 and NOD2, which recognize iE-DAP and MDP, respectively, thereby activating TAB-TAK and IKK complexes and inducing activation of NF-κB and MAPK signaling pathways. TRIP6 and RIP7 positively regulate NOD1/2-RIP2 mediated signaling pathway, whereas caspase-12, A20, OTULIN and CYLD negatively regulate the NOD1/2-RIP2 mediated signaling pathway. RIP2 can interact with caspase-1 to mediate the activation of NF-κB, whereas ASC competes with RIP2 to inhibit the activation of NF-κB by caspase-1 and promotes the processing of proinflammatory cytokines. iE-DAP stands for γ-d-glutamyl-meso-diaminopimelic acid. MDP stands for muramyl dipeptide. NOD stands for nucleotide-binding oligomerization domains. XIAP stands for X-linked inhibitor of apoptosis protein. TRIP6 stands for thyroid hormone receptor interactor 6. CYLD stands for cylindromatosis. TAK stands for TGFβ-activated kinase. TAB stands for TGFβ-activated kinase binding protein. IKK stands for inhibitor of nuclear factor kappa-B kinase. and MAPK stands for mitogen-activated protein kinase
Fig. 4 RIP1, RIP2, and RIP3-mediated signaling pathways in teleosts RIP1 is involved in activation of TLR3, TLR19, and TLR22 mediated NF-κB signaling pathway through interaction with TRIF, and also activates TBK1 and IKKε-mediated production of IFN by binding to downstream TRAF3 in teleosts. Recognition of viral dsRNA activates RIG-I and MDA5, which then mediate downstream IRF3 and IRF7 signal transduction through the adaptor molecule MAVS, whereas RIP1 negatively regulates MAVS-mediated RLRs antiviral signal pathway. The combination of RIP1, TRAD and TRAF2 activates NF-κB signaling pathway and mediates cell apoptosis upon the stimulation of TNF-α. RIP1 form necrosomes with RIP3 and MLKL to induce cell necrosis. RIP2 interacts with NOD1/2 to activate the TAB-TAK1 and IKK complexes and induce the activation of the NF-κB signaling pathway to promote the production of proinflammatory cytokines. RIP2 is involved in MHC antigen presentation and autophagy. RIG-Ⅰstands for retinoic acid-inducible geneⅠ. MDA5 stands for melanoma differentiation associated gene 5. MAVS stands for mitochondrial antiviral-signaling protein. MHC stands for major histocompatibility complex. TBK1 stands for TANK binding kinase 1. IRF3 stands for interferon regulatory factor 3. IRF7 stands for interferon regulatory factor 7. and ISGs stands for interferon stimulated genes
[1] | Nelson JS. Fishes of the World[M]. 4th edition. New York:John Wiley and Sons, 2006. |
[2] |
Zhu LY, Nie L, Zhu G, et al. Advances in research of fish immune-relevant genes:a comparative overview of innate and adaptive immunity in teleosts[J]. Developmental and Comparative Immunology, 2013,39(1-2):39-62.
doi: 10.1016/j.dci.2012.04.001 URL |
[3] |
Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses[J]. Clinical Microbiology Reviews, 2009,22(2):240-273.
doi: 10.1128/CMR.00046-08 pmid: 19366914 |
[4] |
Tsuda H, Ning Z, Yamaguchi Y, et al. Programmed cell death and its possible relationship with periodontal disease[J]. Journal of Oral Science, 2012,54(2):137-149.
doi: 10.2334/josnusd.54.137 URL |
[5] |
Siqueira MDS, Ribeiro RM, Travassos LH. Autophagy and its interaction with intracellular bacterial pathogens[J]. Frontiers in Immunology, 2018,9:935.
doi: 10.3389/fimmu.2018.00935 pmid: 29875765 |
[6] |
Vanden Berghe T, Vanlangenakker N, Parthoens E, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features[J]. Cell Death and Differentiation, 2010,17(6):922-930.
doi: 10.1038/cdd.2009.184 pmid: 20010783 |
[7] |
Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines:recommendations of the Nomenclature Committee on Cell Death 2012[J]. Cell Death and Differentiation, 2012,19(1):107-120.
doi: 10.1038/cdd.2011.96 pmid: 21760595 |
[8] |
Mocarski ES, Upton JW, Kaiser WJ. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways[J]. Nature Reviews Immunology, 2011,12(2):79-88.
doi: 10.1038/nri3131 URL |
[9] |
Festjens N, Vanden Berghe T, Cornelis S, et al. RIP1, a kinase on the crossroads of a cell’s decision to live or die[J]. Cell Death and Differentiation, 2007,14(3):400-410.
doi: 10.1038/sj.cdd.4402085 URL |
[10] |
Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival[J]. Cell, 2009,138(2):229-232.
doi: 10.1016/j.cell.2009.07.006 pmid: 19632174 |
[11] |
Silke J, Rickard JA, Gerlic M. The diverse role of RIP kinases in necroptosis and inflammation[J]. Nature Immunology, 2015,16(7):689-697.
doi: 10.1038/ni.3206 pmid: 26086143 |
[12] |
Stanger BZ, Leder P, Lee TH, et al. RIP - a novel protein containing a death domain that interacts with Fas/APO-1(CD95)in yeast and causes cell-death[J]. Cell, 1995,81(4):513-523.
pmid: 7538908 |
[13] |
Sun XQ, Yin JP, Starovasnik MA, et al. Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein(RIP)by RIP3[J]. Journal of Biological Chemistry, 2002,277(11):9505-9511.
doi: 10.1074/jbc.M109488200 URL |
[14] |
Kaiser WJ, Offermann MK. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif[J]. Journal of Immunology, 2005,174(8):4942-4952.
doi: 10.4049/jimmunol.174.8.4942 URL |
[15] |
Rebsamen M, Heinz LX, Meylan E, et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappa B[J]. Embo Reports, 2009,10(8):916-922.
doi: 10.1038/embor.2009.109 pmid: 19590578 |
[16] |
O’Donnell MA, Legarda-Addison D, Skountzos P, et al. Ubiquitination of RIP1 regulates an NF-kappa B independent cell-death switch in TNF signaling[J]. Current Biology, 2007,17(5):418-424.
doi: 10.1016/j.cub.2007.01.027 URL |
[17] |
Park HH, Lo YC, Lin SC, et al. The death domain superfamily in intracellular signaling of apoptosis and inflammation[J]. Annual Review of Immunology, 2007,25:561-586.
doi: 10.1146/annurev.immunol.25.022106.141656 URL |
[18] | Dowling JP, Cai Y, Bertin J, et al. Kinase-independent function of RIP1, critical for mature T-cell survival and proliferation[J]. Cell Death & Disease, 2016,7:e2379. |
[19] |
Kelliher MA, Grimm S, Ishida Y, et al. The death domain kinase RIP mediates the TNF-induced NF-kappa B signal[J]. Immunity, 1998,8(3):297-303.
pmid: 9529147 |
[20] |
Newton K. RIPK1 and RIPK3:critical regulators of inflammation and cell death[J]. Trends in Cell Biology, 2015,25(6):347-353.
doi: 10.1016/j.tcb.2015.01.001 pmid: 25662614 |
[21] |
Ting AT, PimentelMuinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappa B but not Fas/APO-1-initiated apoptosis[J]. Embo Journal, 1996,15(22):6189-6196.
pmid: 8947041 |
[22] | Christofferson DE, Li Y, Hitomi J, et al. A novel role for RIP1 kinase in mediating TNF alpha production[J]. Cell Death & Disease, 2012,3:e320. |
[23] | de Almagro MC, Goncharov T, Newton K, et al. Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination[J]. Cell Death & Disease, 2015,6:e1800. |
[24] | Lin X, Chen Q, Huang C, et al. CYLD promotes TNF-alpha-Induced cell necrosis mediated by RIP-1 in human lung cancer cells[J]. Mediators of Inflammation, 2016,2016:1542786. |
[25] | Zhang D, Lin J, Han J. Receptor-interacting protein(RIP)kinase family[J]. Cellular & Molecular Immunology, 2010,7(4):243-249. |
[26] |
Yang S, Wang B, Tang LS, et al. Pellino3 targets RIP1 and regulates the pro-apoptotic effects of TNF-α[J]. Nature Communications, 2013,4:2583.
doi: 10.1038/ncomms3583 URL |
[27] |
Najjar M, Saleh D, Zelic M, et al. RIPK1 and RIPK3 kinases promote cell-death-independent inflammation by Toll-like receptor 4[J]. Immunity, 2016,45(1):46-59.
doi: 10.1016/j.immuni.2016.06.007 pmid: 27396959 |
[28] | Buchrieser J, Jose Oliva-Martin M, Moore MD, et al. RIPK1 is a critical modulator of both tonic and TLR-responsive inflammatory and cell death pathways in human macrophage differentiation[J]. Cell Death & Disease, 2018,9(10):973. |
[29] |
Witt A, Vucic D. Diverse ubiquitin linkages regulate RIP kinases-mediated inflammatory and cell death signaling[J]. Cell Death and Differentiation, 2017,24(7):1160-1171.
doi: 10.1038/cdd.2017.33 URL |
[30] |
Dillon CP, Weinlich R, Rodriguez DA, et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3[J]. Cell, 2014,157(5):1189-1202.
doi: 10.1016/j.cell.2014.04.018 URL |
[31] |
Christofferson DE, Li Y, Yuan J. Control of life-or-death decisions by RIP1 kinase[J]. Annual Review of Physiology, 2014,76:129-150.
doi: 10.1146/annurev-physiol-021113-170259 pmid: 24079414 |
[32] |
Rajput A, Kovalenko A, Bogdanov K, et al. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein[J]. Immunity, 2011,34(3):340-351.
doi: 10.1016/j.immuni.2010.12.018 pmid: 21419663 |
[33] |
Dannappel M, Vlantis K, Kumari S, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis[J]. Nature, 2014,513(7516):90-94.
doi: 10.1038/nature13608 pmid: 25132550 |
[34] |
Lukens JR, Vogel P, Johnson GR, et al. RIP1-driven autoinflammation targets IL-1 alpha independently of inflammasomes and RIP3[J]. Nature, 2013,498(7453):224-227.
doi: 10.1038/nature12174 pmid: 23708968 |
[35] |
Wang H, Sun L, Su L, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3[J]. Molecular Cell, 2014,54(1):133-146.
doi: 10.1016/j.molcel.2014.03.003 URL |
[36] |
Cai Z, Jitkaew S, Zhao J, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis[J]. Nature Cell Biology, 2014,16(1):55-65.
doi: 10.1038/ncb2883 URL |
[37] |
Cho Y, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation[J]. Cell, 2009,137(6):1112-1123.
doi: 10.1016/j.cell.2009.05.037 URL |
[38] |
Rodriguez DA, Weinlich R, Brown S, et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis[J]. Cell Death and Differentiation, 2016,23(1):76-88.
doi: 10.1038/cdd.2015.70 pmid: 26024392 |
[39] | Nogusa S, Thapa RJ, Dillon CP, et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza a virus[J]. Cell Host & Microbe, 2016,20(1):13-24. |
[40] |
Rickard JA, O’Donnell JA, Evans JM, et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis[J]. Cell, 2014,157(5):1175-1188.
doi: 10.1016/j.cell.2014.04.019 pmid: 24813849 |
[41] | Kaiser WJ, Daley-Bauer LP, Thapa RJ, et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(21):7753-7758. |
[42] |
Petersen SL, Chen TT, Lawrence DA, et al. TRAF2 is a biologically important necroptosis suppressor[J]. Cell Death and Differentiation, 2015,22(11):1846-1857.
doi: 10.1038/cdd.2015.35 pmid: 25882049 |
[43] |
Orning P, Weng D, Starheim K, et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death[J]. Science, 2018,362(6418):1064-1069.
doi: 10.1126/science.aau2818 URL |
[44] |
Li Y, Gong P, Kong C, et al. Bufalin engages in RIP1-dependent and ROS-dependent programmed necroptosis in breast cancer cells by targeting the RIP1/RIP3/PGAM5 pathway[J]. Anti-Cancer Drugs, 2019,30(7):706-713.
doi: 10.1097/CAD.0000000000000770 URL |
[45] |
Mocarski ES, Upton JW, Kaiser WJ. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways[J]. Nature Reviews Immunology, 2012,12(2):79-88.
doi: 10.1038/nri3131 URL |
[46] | Moujalled DM, Cook WD, Murphy JM, et al. Necroptosis induced by RIPK3 requires MLKL but not Drp1[J]. Cell Death & Disease, 2014,5:e1086. |
[47] |
Kaiser WJ, Sridharan H, Huang C, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL[J]. Journal of Biological Chemistry, 2013,288(43):31268-31279.
doi: 10.1074/jbc.M113.462341 URL |
[48] | Upton JW, Kaiser WJ, Mocarski ES. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA[J]. Cell Host & Microbe, 2012,11(3):290-297. |
[49] |
Lawlor KE, Khan N, Mildenhall A, et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL[J]. Nature Communications, 2015,6:6282.
doi: 10.1038/ncomms7282 pmid: 25693118 |
[50] |
Shlomovitz I, Zargrian S, Gerlic M. Mechanisms of RIPK3-induced inflammation[J]. Immunology and Cell Biology, 2017,95(2):166-172.
doi: 10.1038/icb.2016.124 pmid: 27974745 |
[51] |
Croker BA, O’Donnell JA, Gerlic M. Pyroptotic death storms and cytopenia[J]. Current Opinion in Immunology, 2014,26:128-137.
doi: 10.1016/j.coi.2013.12.002 pmid: 24556409 |
[52] |
Duong BH, Onizawa M, Oses-Prieto JA, et al. A20 restricts ubiquitination of pro-interleukin-1 beta protein complexes and suppresses NLRP3 inflammasome activity[J]. Immunity, 2015,42(1):55-67.
doi: 10.1016/j.immuni.2014.12.031 pmid: 25607459 |
[53] |
Weng D, Marty-Roix R, Ganesan S, et al. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(20):7391-7396.
doi: 10.1073/pnas.1403477111 pmid: 24799678 |
[54] |
Yu PW, Huang BCB, Shen M, et al. Identification of RIP3, a RIP-like kinase that activates apoptosis and NF kappa B[J]. Current Biology, 1999,9(10):539-542.
pmid: 10339433 |
[55] |
Wei S, Zhou H, Wang Q, et al. RIP3 deficiency alleviates liver fibrosis by inhibiting ROCK1-TLR4-NF-kappa B pathway in macrophages[J]. Faseb Journal, 2019,33(10):11180-11193.
doi: 10.1096/fsb2.v33.10 URL |
[56] |
Goncharov T, Niessen K, de Almagro MC, et al. OTUB1 modulates c-IAP1 stability to regulate signalling pathways[J]. Embo Journal, 2013,32(8):1103-1114.
doi: 10.1038/emboj.2013.62 URL |
[57] |
Wang WL, Hong JR, Lin GH, et al. Stage-specific expression of TNF alpha regulates Bad/Bid-mediated apoptosis and RIP1/ROS-mediated secondary necrosis in birnavirus-infected fish cells[J]. PLoS One, 2011,6(2):e16740.
doi: 10.1371/journal.pone.0016740 URL |
[58] | Ge Y, Yang H, Zhao L, et al. Structural and functional conservation of half-smooth tongue sole Cynoglossus semilaevis RIP3 in cell death signalling[J]. Fish & Shellfish Immunology, 2018,82:573-578. |
[59] |
Roca FJ, Ramakrishnan L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species[J]. Cell, 2013,153(3):521-534.
doi: 10.1016/j.cell.2013.03.022 URL |
[60] |
Viringipurampeer IA, Shan X, Gregory-Evans K, et al. Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish[J]. Cell Death and Differentiation, 2014,21(5):665-675.
doi: 10.1038/cdd.2013.191 pmid: 24413151 |
[61] | Zhang Q, Wang S, Zheng S, et al. Chlorpyrifos suppresses neutrophil extracellular traps in carp by promoting necroptosis and inhibiting respiratory burst caused by the PKC/MAPK pathway[J]. Oxidative Medicine and Cellular Longevity, 2019: 1763589. |
[62] | Cui Y, Yin K, Gong Y, et al. Atrazine induces necroptosis by miR-181-5p targeting inflammation and glycometabolism in carp lymphocytes[J]. Fish & Shellfish Immunology, 2019,94:730-738. |
[63] |
Zhang X, Liu Z, Wu S, et al. Fish RIP1 mediates innate antiviral immune responses induced by SGIV and RGNNV infection[J]. Frontiers in Immunology, 2020,11:1718.
doi: 10.3389/fimmu.2020.01718 pmid: 32849607 |
[64] |
Xie XC, Cao YY, Dai YH, et al. Black carp RIPK1 negatively regulates MAVS-mediated antiviral signaling during the innate immune activation[J]. Developmental and Comparative Immunology, 2020,109:103726.
doi: 10.1016/j.dci.2020.103726 URL |
[65] |
Inohara N, del Peso L, Koseki T, et al. RICK, a novel protein kinase containing a caspase recruitment domain, interacts with CLARP and regulates CD95-mediated apoptosis[J]. Journal of Biological Chemistry, 1998,273(20):12296-12300.
doi: 10.1074/jbc.273.20.12296 URL |
[66] |
Thome M, Hofmann K, Burns K, et al. Identification of CARDIAK, a RIP-like kinase that associates with caspase-1[J]. Current Biology, 1998,8(15):885-888.
pmid: 9705938 |
[67] |
Kobayashi K, Inohara N, Hernandez LD, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems[J]. Nature, 2002,416(6877):194-199.
pmid: 11894098 |
[68] |
Inohara N, Koseki T, Lin JM, et al. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways[J]. Journal of Biological Chemistry, 2000,275(36):27823-27831.
doi: 10.1074/jbc.M003415200 URL |
[69] |
Martinon F, Tschopp J. Inflammatory caspases:Linking an intracellular innate immune system to autoinflammatory diseases[J]. Cell, 2004,117(5):561-574.
pmid: 15163405 |
[70] |
Anand PK, Tait SWG, Lamkanfi M, et al. TLR2 and RIP2 pathways mediate autophagy of listeria monocytogenes via extracellular signal-regulated kinase(ERK)activation[J]. Journal of Biological Chemistry, 2011,286(50):42981-42991.
doi: 10.1074/jbc.M111.310599 URL |
[71] |
Bertrand MJM, Doiron K, Labbe K, et al. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2[J]. Immunity, 2009,30(6):789-801.
doi: 10.1016/j.immuni.2009.04.011 pmid: 19464198 |
[72] |
Cai X, Du J, Liu Y, et al. Identification and characterization of receptor-interacting protein 2 as a TNFR-associated factor 3 binding partner[J]. Gene, 2013,517(2):205-211.
doi: 10.1016/j.gene.2012.12.026 URL |
[73] |
Du X, Jiang S, Liu H, et al. MS80, a novel sulfated polysaccharide, inhibits CD40-NF-kappa B pathway via targeting RIP2[J]. Molecular and Cellular Biochemistry, 2010,337(1-2):277-285.
doi: 10.1007/s11010-009-0309-9 URL |
[74] |
Chin AI, Dempsey PW, Bruhn K, et al. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses[J]. Nature, 2002,416(6877):190-194.
doi: 10.1038/416190a URL |
[75] | LeBlanc PM, Yeretssian G, Rutherford N, et al. Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity[J]. Cell Host & Microbe, 2008,3(3):146-157. |
[76] | Yan R, Liu Z. LRRK2 enhances Nod1/2-mediated inflammatory cytokine production by promoting Rip2 phosphorylation[J]. Protein & Cell, 2017,8(1):55-66. |
[77] |
Li LY, Bin LH, Li F, et al. TRIP6 is a RIP2-associated common signaling component of multiple NF-kappa B activation pathways[J]. Journal of Cell Science, 2005,118(3):555-563.
doi: 10.1242/jcs.01641 URL |
[78] |
Yang Y, Yin C, Pandey A, et al. NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2[J]. Journal of Biological Chemistry, 2007,282(50):36223-36229.
doi: 10.1074/jbc.M703079200 URL |
[79] |
Hasegawa M, Fujimoto Y, Lucas PC, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappa B activation[J]. Embo Journal, 2008,27(2):373-383.
doi: 10.1038/sj.emboj.7601962 URL |
[80] |
Damgaard RB, Nachbur U, Yabal M, et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity[J]. Molecular Cell, 2012,46(6):746-758.
doi: 10.1016/j.molcel.2012.04.014 pmid: 22607974 |
[81] | Krieg A, Correa RG, Garrison JB, et al. XIAP mediates NOD signaling via interaction with RIP2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(34):14524-14529. |
[82] |
Yang S, Wang B, Humphries F, et al. Pellino3 ubiquitinates RIP2 and mediates Nod2-induced signaling and protective effects in colitis[J]. Nature Immunology, 2013,14(9):927-936.
doi: 10.1038/ni.2669 URL |
[83] |
Hitotsumatsu O, Ahmad R-C, Tavares R, et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals[J]. Immunity, 2008,28(3):381-390.
doi: 10.1016/j.immuni.2008.02.002 pmid: 18342009 |
[84] |
Fiil BK, Damgaard RB, Wagner SA, et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling[J]. Molecular Cell, 2013,50(6):818-830.
doi: 10.1016/j.molcel.2013.06.004 URL |
[85] |
Hrdinka M, Fiil BK, Zucca M, et al. CYLD limits Lys63-and Met1-linked ubiquitin at receptor complexes to regulate Innate immune signaling[J]. Cell Reports, 2016,14(12):2846-2858.
doi: 10.1016/j.celrep.2016.02.062 pmid: 26997266 |
[86] |
Sarkar A, Duncan M, Hart J, et al. ASC directs NF-kappa B activation by regulating receptor interacting protein-2(RIP2)caspase-1 interactions[J]. Journal of Immunology, 2006,176(8):4979-4986.
doi: 10.4049/jimmunol.176.8.4979 URL |
[87] |
McCarthy JV, Ni J, Dixit VM. RIP2 is a novel NF-kappa B-activating and cell death-inducing kinase[J]. Journal of Biological Chemistry, 1998,273(27):16968-16975.
doi: 10.1074/jbc.273.27.16968 URL |
[88] | Swain B, Basu M, Samanta M. Molecular cloning and characterization of nucleotide binding and oligomerization domain-1(NOD1)receptor in the Indian Major Carp, rohu(Labeo rohita), and analysis of its inductive expression and down-stream signalling molecules following ligands exposure and gram-negative bacterial infections[J]. Fish & Shellfish Immunology, 2012,32(5):899-908. |
[89] |
Maharana J, Swain B, Sahoo BR, et al. Identification of MDP(muramyl dipeptide)-binding key domains in NOD2(nucleotide-binding and oligomerization domain-2)receptor of Labeo rohita[J]. Fish Physiology and Biochemistry, 2013,39(4):1007-1023.
doi: 10.1007/s10695-012-9758-2 URL |
[90] |
Swain B, Basu M, Samanta M. NOD1 and NOD2 receptors in mrigal(Cirrhinus mrigala):Inductive expression and downstream signalling in ligand stimulation and bacterial infections[J]. Journal of Biosciences, 2013,38(3):533-548.
doi: 10.1007/s12038-013-9330-y URL |
[91] | Hou QH, Yi SB, Ding X, et al. Differential expression analysis of nuclear oligomerization domain proteins NOD1 and NOD2 in orange-spotted grouper(Epinephelus coioides)[J]. Fish & Shellfish Immunology, 2012,33(5):1102-1111. |
[92] |
Basu M, Paichha M, Swain B, et al. Modulation of TLR2, TLR4, TLR5, NOD1 and NOD2 receptor gene expressions and their downstream signaling molecules following thermal stress in the Indian major carp catla(Catla catla)[J]. 3 Biotech, 2015,5(6):1021-1030.
doi: 10.1007/s13205-015-0306-5 URL |
[93] |
Xie J, Belosevic M. Functional characterization of receptor-interacting serine/threonine kinase 2(RIP2)of the goldfish(Carassius auratus L.)[J]. Developmental and Comparative Immunology, 2015,48(1):76-85.
doi: 10.1016/j.dci.2014.09.006 URL |
[94] |
Bi D, Gao Y, Chu Q, et al. NOD1 is the innate immune receptor for iE-DAP and can activate NF-kappa B pathway in teleost fish[J]. Developmental and Comparative Immunology, 2017,76:238-246.
doi: 10.1016/j.dci.2017.06.012 URL |
[95] | Zou PF, Chang MX, Li Y, et al. NOD2 in Zebrafish functions in antibacterial and also antiviral responses via NF-kappa B, and also MDA5, RIG-I and MAVS[J]. Fish & Shellfish Immunology, 2016,55:173-185. |
[96] |
Wu XM, Cao L, Nie P, et al. Histone H2A cooperates with RIP2 to induce the expression of antibacterial genes and MHC related genes[J]. Developmental and Comparative Immunology, 2019,101:103455.
doi: 10.1016/j.dci.2019.103455 URL |
[97] |
Wu XM, Chen WQ, Hu YW, et al. RIP2 is a critical regulator for NLRs signaling and MHC antigen presentation but not for MAPK and PI3K/Akt pathways[J]. Frontiers in Immunology, 2018,9:726.
doi: 10.3389/fimmu.2018.00726 URL |
[98] | Jang JH, Kim H, Kim YJ, et al. Molecular cloning and functional analysis of nucleotide-binding oligomerization domain-containing protein 1 in rainbow trout, Oncorhynchus mykiss[J]. Fish & Shellfish Immunology, 2016,51:53-63. |
[99] | Liu J, Cao D, Liu Y, et al. Expression and functional analysis of receptor-interacting serine/threonine kinase 2(RIP2)in Japanese flounder(Paralichthys olivaceus)[J]. Fish & Shellfish Immunology, 2018,75:327-335. |
[100] |
Xie J, Belosevic M. Functional characterization of apoptosis-associated speck-like protein(ASC)of the goldfish(Carassius auratus L.)[J]. Developmental and Comparative Immunology, 2016,65:201-210.
doi: 10.1016/j.dci.2016.07.013 URL |
[101] |
Bahr C, Rohwer A, Stempka L, et al. DIK, a novel protein kinase that interacts with protein kinase Cdelta. Cloning, characterization, and gene analysis[J]. Journal of Biological Chemistry, 2000,275(46):36350-36357.
doi: 10.1074/jbc.M004771200 URL |
[102] |
Chen LJ, Haider K, Ponda M, et al. Protein kinase C-associated kinase(PKK), a novel membrane-associated, ankyrin repeat-containing protein kinase[J]. Journal of Biological Chemistry, 2001,276(24):21737-21744.
doi: 10.1074/jbc.M008069200 URL |
[103] |
Holland PM, Willis CR, Kanaly S, et al. RIP4 is an ankyrin repeat-containing kinase essential for keratinocyte differentiation[J]. Current Biology, 2002,12(16):1424-1428.
pmid: 12194825 |
[104] |
Cariappa A, Chen LJ, Haider K, et al. A catalytically inactive form of protein kinase C-associated kinase/receptor interacting protein 4, a protein kinase C beta-associated kinase that mediates NF-kappa B activation, interferes with early B cell development[J]. Journal of Immunology, 2003,171(4):1875-1880.
pmid: 12902489 |
[105] |
Chen L, Oleksyn D, Pulvino M, et al. A critical role for the protein kinase PKK in the maintenance of recirculating mature B cells and the development of B1 cells[J]. Immunology Letters, 2016,172:67-78.
doi: 10.1016/j.imlet.2016.02.015 URL |
[106] |
Meylan E, Martinon F, Thome M, et al. RIP4(DIK/PKK), a novel member of the RIP kinase family, activates NF-kappa B and is processed during apoptosis[J]. Embo Reports, 2002,3(12):1201-1208.
doi: 10.1093/embo-reports/kvf236 URL |
[107] |
Muto A, Ruland J, McAllister-Lucas LM, et al. Protein kinase C-associated kinase(PKK)mediates Bcl10-independent NF-kappa B activation induced by phorbol ester[J]. Journal of Biological Chemistry, 2002,277(35):31871-31876.
doi: 10.1074/jbc.M202222200 URL |
[108] |
Kim SW, Schifano M, Oleksyn D, et al. Protein kinase C-associated kinase regulates NF-kappa B activation through inducing IKK activation[J]. International Journal of Oncology, 2014,45(4):1707-1714.
doi: 10.3892/ijo.2014.2578 URL |
[109] |
Moran ST, Haider K, Ow Y, et al. Protein kinase C-associated kinase can activate NF kappa B in both a kinase-dependent and a kinase-independent manner[J]. Journal of Biological Chemistry, 2003,278(24):21526-21533.
doi: 10.1074/jbc.M301575200 URL |
[110] |
Kim SW, Oleksyn DW, Rossi RM, et al. Protein kinase C-associated kinase is required for NF-kappa B signaling and survival in diffuse large B-cell lymphoma cells[J]. Blood, 2008,111(3):1644-1653.
doi: 10.1182/blood-2007-05-088591 URL |
[111] |
Bertrand MJM, Lippens S, Staes A, et al. cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4(RIP1-4)[J]. PLoS One, 2011,6(9):e22356.
doi: 10.1371/journal.pone.0022356 URL |
[112] |
Bae HC, Jeong SH, Kim JH, et al. RIP4 upregulates CCL20 expression through STAT3 signalling in cultured keratinocytes[J]. Experimental Dermatology, 2018,27(10):1126-1133.
doi: 10.1111/exd.2018.27.issue-10 URL |
[113] |
Zha JK, Zhou QH, Xu LG, et al. RIP5 is a RIP-homologous inducer of cell death[J]. Biochemical and Biophysical Research Communications, 2004,319(2):298-303.
doi: 10.1016/j.bbrc.2004.04.194 URL |
[114] |
Racetin A, Raguz F, Durdov MG, et al. Immunohistochemical expression pattern of RIP5, FGFR1, FGFR2 and HIP2 in the normal human kidney development[J]. Acta Histochemica, 2019,121(5):531-538.
doi: S0065-1281(19)30029-7 pmid: 31047684 |
[115] |
Becica T, Kero D, Vukojevic K, et al. Growth factors FGF8 and FGF2 and their receptor FGFR1, transcriptional factors Msx-1 and MSX-2, and apoptotic factors p19 and RIP5 participate in the early human limb development[J]. Acta Histochemica, 2018,120(3):205-214.
doi: S0065-1281(17)30380-X pmid: 29409666 |
[116] |
Sanna-Cherchi S, Sampogna RV, Papeta N, et al. Mutations in DSTYK and dominant urinary tract malformations[J]. New England Journal of Medicine, 2013,369(7):621-629.
doi: 10.1056/NEJMoa1214479 URL |
[117] | Hanafusa H, Yagi T, Ikeda H, et al. LRRK1 phosphorylation of Rab7 at S72 links trafficking of EGFR-containing endosomes to its effector RILP[J]. Journal of Cell Science, 2019, 132(11):jcs228809. |
[118] |
Guo L, Girisha KM, Iida A, et al. Identification of a novel LRRK1 mutation in a family with osteosclerotic metaphyseal dysplasia[J]. Journal of Human Genetics, 2017,62(3):437-441.
doi: 10.1038/jhg.2016.136 URL |
[119] |
Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology[J]. Neuron, 2004,44(4):601-607.
doi: 10.1016/j.neuron.2004.11.005 URL |
[120] | Wu B, Xiao K, Zhang Z, et al. Altered expression of EPO might underlie hepatic hemangiomas in LRRK2 knockout mice[J]. Biomed Research International, 2016: 7681259. |
[121] |
Baptista MAS, Dave KD, Frasier MA, et al. Loss of leucine-rich repeat kinase 2(LRRK2)in Rats leads to progressive abnormal phenotypes in peripheral organs[J]. PLoS One, 2013,8(11):e80705.
doi: 10.1371/journal.pone.0080705 URL |
[122] | Fuji RN, Flagella M, Baca M, et al. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung[J]. Science Translational Medicine, 2015, 7(273):273ra15. |
[123] |
Schapansky J, Khasnavis S, DeAndrade MP, et al. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble alpha-synuclein in neurons[J]. Neurobiology of Disease, 2018,111:26-35.
doi: S0969-9961(17)30283-8 pmid: 29246723 |
[124] |
Sheng D, See K, Hu X, et al. Disruption of LRRK2 in Zebrafish leads to hyperactivity and weakened antibacterial response[J]. Biochemical and Biophysical Research Communications, 2018,497(4):1104-1109.
doi: 10.1016/j.bbrc.2018.02.186 URL |
[125] |
Ren G, Xin S, Li S, et al. Disruption of LRRK2 does not cause specific loss of dopaminergic neurons in Zebrafish[J]. PLoS One, 2011,6(6):e20630.
doi: 10.1371/journal.pone.0020630 URL |
[126] |
Prabhudesai S, Bensabeur FZ, Abdullah R, et al. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation[J]. Journal of Neuroscience Research, 2016,94(8):717-735.
doi: 10.1002/jnr.23754 pmid: 27265751 |
[1] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[2] | CHEN Bao-qiang, LI Ying-ying, MA Bo-ya, ROUZHAGULI Malike, YOULITUZI Naibi, SONG Jin-di, LIU Jun, WANG Xi-dong. Functional Analysis of the Type III Secreted Effector Gene aop2 in Acidovorax citrulli [J]. Biotechnology Bulletin, 2023, 39(6): 286-297. |
[3] | HU Li-li, LIN Bo-rong, WANG Hong-hong, CHEN Jian-song, LIAO Jin-ling, ZHUO Kan. Transcriptome and Candidate Effectors Analysis of Pratylenchus brachyurus [J]. Biotechnology Bulletin, 2023, 39(3): 254-266. |
[4] | CHEN Ying, WANG Yi-lei, ZOU Peng-fei. Cloning and Expression Analysis of TRAF6 from Large Yellow Croaker Larimichthys crocea [J]. Biotechnology Bulletin, 2022, 38(8): 233-243. |
[5] | SU Yu, LI Zong-yun, HAN Yong-hua. Advances in Plant Vacuolar Processing Enzymes [J]. Biotechnology Bulletin, 2021, 37(6): 181-191. |
[6] | MO Li-jie, LIU Xia-tong, LI Hui, LU Hai. On the Function of Plant Cysteine Protease in Plant Growth and Development [J]. Biotechnology Bulletin, 2021, 37(6): 202-212. |
[7] | ZOU Chen-chen, RUAN Ling-wei, SHI Hong. Wnt Signaling Pathway and Innate Immunity of Invertebrate [J]. Biotechnology Bulletin, 2021, 37(5): 182-196. |
[8] | LI Zong-jie, DI Di, LI Bei-bei. The Relationship Between Lung Microbiota and Respiratory Diseases [J]. Biotechnology Bulletin, 2020, 36(2): 188-192. |
[9] | HU Qi-chao, LUORENG Zhuo-ma, WEI Da-wei, YANG Jian, JIA Li, WANG Xing-ping, MA Yun. Research Progress on Innate Immunity-Related Coding Genes in the Regulation of Cow Mastitis [J]. Biotechnology Bulletin, 2020, 36(12): 239-246. |
[10] | DONG Ru, CAO Yang-rong. Research Progress on the Immune Regulation of Symbiotic Nitrogen Fixation Between Legumes and Rhizobia [J]. Biotechnology Bulletin, 2019, 35(10): 25-33. |
[11] | LIU Hui, DENG Zhi, YANG Hong, DAI Long-jun, LI De-jun. Expression and Stress Tolerance Analysis of HbMC2 Gene from Hevea brasliensis in Yeast [J]. Biotechnology Bulletin, 2018, 34(9): 202-208. |
[12] | XIA Hong-li, CHENG Jun, YU Da-peng, CHEN Wen-jie, LU Yi-shan. Research Progress on Peptidoglycan Recognition Proteins in Fish [J]. Biotechnology Bulletin, 2018, 34(8): 58-66. |
[13] | WANG Dan-dan, CHI Chun-ning, BAI Jing, CHEN Chong, CHI Chun-yu, DING Guo-hua. Expression Analysis of Mitochondria-related Genes During PCD Induced by Salicylic Acid and Downy Mildew in Cucumber [J]. Biotechnology Bulletin, 2018, 34(7): 85-91. |
[14] | LI Ping ,ZHANG Gui-ping, HU Jian-ran. Effects of Total Flavonoids from Forsythia suspense on the Proliferation of Gastric Cancer Cell MGC80-3 [J]. Biotechnology Bulletin, 2018, 34(6): 199-203. |
[15] | DENG Yu-qing, LI Ping, ZHOU Yan, XIONG Ke-cai, LI Zhong-an. Progress on Detection Technology of Programmed Cell Death in Plant [J]. Biotechnology Bulletin, 2017, 33(3): 52-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||