Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (8): 233-242.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1473
Previous Articles Next Articles
DUAN Xu-guo(), ZHANG Yu-hua, HUANG Ting-ting, DING Qian, LUAN Shu-yue, ZHU Qiu-yu
Received:
2020-12-02
Online:
2021-08-26
Published:
2021-09-10
DUAN Xu-guo, ZHANG Yu-hua, HUANG Ting-ting, DING Qian, LUAN Shu-yue, ZHU Qiu-yu. Synergetic Enhancing the Soluble Expression of Thermotoga maritima α-Glucan Phosphorylase by Chemical Chaperones and Induction Condition Optimization[J]. Biotechnology Bulletin, 2021, 37(8): 233-242.
Fig. 1 SDS-PAGE analysis of α-glucan phosphorylase pro-duced by the recombinant strains and the control strain M: protein standard; 1: soluble fraction of recombinant strain; 2: insoluble fraction of recombinant strain; 3: soluble fraction of the control strain; 4: insoluble fraction of the control strain
Fig. 2 Effect of lactose concentration on the recombinant strain growth and enzyme production (A) and the SDS-PAGE analysis of cell disruption supernatant of the recombinant strain (B)
Fig. 3 Effect of IPTG concentration on the recombinant strain growth and enzyme production (A) and the SDS-PAGE analysis of cell disruption supernatant of the recombinant strain (B)
Fig. 4 Effect of induction temperature on the recombinant strain growth and enzyme production (A) and the SDS-PAGE analysis of cell disruption supernatant of the recombinant strain (B)
Fig. 5 Effect of adding inducer at different times on the recombinant strain growth and enzyme production (A) and the SDS-PAGE analysis of cell disruption supernatant of the recombinant strain (B)
[1] |
Ye XH, Rollin J, Zhang YH. Thermophilic α-glucan phosphorylase from Clostridium thermocellum cloning, characterization and enhanced thermostability[J]. Journal of Molecular Catalysis B:Enzymatic, 2010, 65:110-116.
doi: 10.1016/j.molcatb.2010.01.015 URL |
[2] | 董晨, 胡会刚, 贾利强, 等. 香蕉α-1, 4-葡聚糖淀粉磷酸化酶基因家族全基因组鉴定与进化分析[J]. 湖北农业科学, 2016, 55(12):3200-3204. |
Dong C, Hu HG, Jia LQ, et al. Genome-wide identification and phylogenetic analysis of α-1, 4-glucan starch phosphorylase gene family of banana[J]. Hubei Agricultural Sciences, 2016, 55(12):3200-3204. | |
[3] |
Nidetzky B, Weinhausel A, Haltrich D, et al. Maltodextrin phosphorylase from Escherichia coli:production and application for the synjournal of alpha-glucose-1-phosphate[J]. Annals of the New York Academy of Sciences, 1996, 782:208-218.
pmid: 8659898 |
[4] |
Bae J, Lee D, Kim D, et al. Facile synjournal of glucose-1-phosphate from starch by Thermus caldophilus GK24 alpha-glucan phosphorylase[J]. Process Biochemistry, 2005, 40(12):3707-3713.
doi: 10.1016/j.procbio.2005.05.007 URL |
[5] | You C, Chen HG, Myung S, et al. Enzymatic transformation of nonfood biomass to starch[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(18):7182-7187. |
[6] | 李恬, 周星, 徐进, 徐学明, 等. 以蔗糖为底物双酶法合成直链糊精[J]. 食品与发酵工业, 2012, 38(10):29-34. |
Li T, Zhou X, Xu J, et al. Enzymatic synjournal of amylodextrin from sucrose[J]. Food and Fermentation Industries, 2012, 38(10):29-34. | |
[7] |
Takata Y, Yamamoto K, Kadokawa J. Preparation of pH-responsive amphoteric glycogen hydrogels by α-glucan phosphorylase-catalyzed successive enzymatic reactions[J]. Macromolecular Chemistry and Physics, 2015, 216(13):1415-1420.
doi: 10.1002/macp.201500151 URL |
[8] |
Nakai H, Kitaoka M, Svensson B, et al. Recent development of phosphorylases possessing large potential for oligosaccharide synjournal[J]. Current Opinion in Chemical Biology, 2013, 17(2):301-309.
doi: 10.1016/j.cbpa.2013.01.006 URL |
[9] | 陈世琼. 一种高温细菌葡聚糖磷酸化酶基因的克隆与表达[J]. 食品与发酵工业, 2009, 35(7):40-43. |
Chen SQ. Clone and overexpression of a novel thermostable glucan phosphorylase from a thermophilic bacterium[J]. Food and Fermentation Industries, 2009, 35(7):40-43. | |
[10] |
Mizanur RM, Griffin AK, Pohl NL. Recombinant production and biochemical characterization of a hyperthermostable alpha-glucan/maltodextrin phosphorylase from Pyrococcus furiosus[J]. Archaea, 2008, 2(3):169-176.
pmid: 19054743 |
[11] |
Zhou W, You C, Ma H, et al. One-pot biosynjournal of high-concentration α-glucose 1-phosphate from starch by sequential addition of three hyperthermophilic enzymes[J]. Journal of Agricultural and Food Chemistry, 2016, 64(8):1777-1783.
doi: 10.1021/acs.jafc.5b05648 pmid: 26832825 |
[12] | 张尧, 吴绵斌, 杨立荣, 等. 重组Pyrococcus furiosus葡聚糖磷酸化酶催化淀粉合成葡萄糖-1-磷酸[J]. 高校化学工程学报, 2016, 30(2):417-422. |
Zhang Y, Wu MB, Yang LR, et al. Synjournal of glucose-1-phosphate from starch by Pyrococcus furiosus glucan phosphorylase[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2):417-422. | |
[13] |
Diamant S, Eliahu N, Rosenthal D, et al. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses[J]. Journal of Biological Chemistry, 2001, 276:39586-39591.
pmid: 11517217 |
[14] |
Jhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli:effects of process conditions and chaperone co-expression on cell growth and production of xylanase[J]. Bioresource Technology, 2012, 123:135-143.
doi: 10.1016/j.biortech.2012.07.011 URL |
[15] |
Duan XG, Zhang XY, Shen ZY, et al. Efficient production of aggregation prone 4-α-glucanotransferase by combined use of molecular chaperones and chemical chaperones in Escherichia coli[J]. Journal of Biotechnology, 2019, 292:68-75.
doi: 10.1016/j.jbiotec.2019.01.014 URL |
[16] | 许蕊, 张昕怡, 潘悦, 等. 来源于解酯菌的嗜热耐碱脂肪酶的表达纯化及其酶学性质研究[J]. 林业工程学报, 2020, 5(3):108-114. |
Xu R, Zhang XY, Pan Y, et al. Expression, purification and characterization of lipase from Thermosyntropha lipolytica[J]. Journal of Forestry Engineering, 2020, 5(3):108-114. | |
[17] | 夏美娟, 宦才辉, 姜婷, 等. 凝结芽孢杆菌N-乙酰-β-D-氨基葡萄糖苷酶基因的克隆鉴定及酶学性质[J]. 林业工程学报, 2017, 2(2):70-75. |
Xia MJ, Huan CH, Jiang T, et al. Molecular cloning and enzymological characteristics of a novel N-acetyl-β-D-glucosaminidase from Bacillus coagulans[J]. Journal of Forestry Engineering, 2017, 2(2):70-75. | |
[18] |
Garcia-Fruitos E, Aris A, Villaverde A. Localization of functional polypeptides in bacterial inclusion bodies[J]. Applied and Environmental Microbiology, 2007, 73(1):289-294.
doi: 10.1128/AEM.01952-06 URL |
[19] |
De Marco A, Vigh L, Diamant S, et al. Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid-or benzyl alcohol-overexpressed molecular chaperones[J]. Cell Stress Chaperon, 2005, 10(4):329-339.
pmid: 16333986 |
[20] |
Ignatova Z, Gierasch LM. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(36):13357-13361.
pmid: 16899544 |
[21] |
Unzueta U, Vazquez F, Accardi G, et al. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories:production of human alpha-galactosidase A[J]. Applied Microbiology and Biotechnology, 2015, 99(14):5863-5874.
doi: 10.1007/s00253-014-6328-9 pmid: 25616525 |
[22] |
Butt TR, Edavettal SC, Hall JP, et al. SUMO fusion technology for difficult-to-express proteins[J]. Protein Expression and Purification, 2005, 43(1):1-9.
doi: 10.1016/j.pep.2005.03.016 URL |
[23] |
Lu W, Cai X, Gu Z, et al. Production and characterization of hirudin variant-1 by SUMO fusion technology in E. coli[J]. Molecular Biotechnology, 2013, 53(1):41-8.
doi: 10.1007/s12033-012-9511-1 URL |
[24] |
Ojima-Kato T, Nagai S, Nakano H. N-terminal SKIK peptide tag markedly improves expression of difficult-to-express proteins in Escherichia coli and Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2017, 123(5):540-546.
doi: S1389-1723(16)30635-1 pmid: 28052816 |
[25] |
Tileva M, Krachmarova E, Ivanov I, et al. Production of aggregation prone human interferon gamma and its mutant in highly soluble and biologically active form by SUMO fusion technology[J]. Protein Expression and Purification, 2016, 117:26-34.
doi: 10.1016/j.pep.2015.09.022 pmid: 26407523 |
[26] |
Hussain H, Fisher DI, Abbott WM, et al. Use of a protein engineering strategy to overcome limitations in the production of “difficult to express” recombinant proteins[J]. Biotechnology and Bioengineering, 2017, 114(10):2348-2359.
doi: 10.1002/bit.26358 pmid: 28627739 |
[27] |
Wang T, Badran AH, Huang TP, et al. Continuous directed evolution of proteins with improved soluble expression[J]. Nature Chemical Biology, 2018, 14(10):972-980.
doi: 10.1038/s41589-018-0121-5 |
[28] |
Esvelt KM, Carlson JC, Liu DR. A system for the continuous directed evolution of biomolecules[J]. Nature, 2011, 472(7344):499-503.
doi: 10.1038/nature09929 URL |
[29] |
Duan XG, Chen J, Wu J. Optimization of pullulanase production in Escherichia coli by regulation of process conditions and supplement with natural osmolytes[J]. Bioresource Technology, 2013, 146:379-385.
doi: 10.1016/j.biortech.2013.07.074 URL |
[30] |
Zou C, Duan XG, Wu J. Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy[J]. Bioresource Technology, 2014, 172:174-179.
doi: 10.1016/j.biortech.2014.09.035 URL |
[1] | DONG Cong, GAO Qing-hua, WANG Yue, LUO Tong-yang, WANG Qing-qing. Increasing the Expression of FAD-dependent Glucose Dehydrogenase by Recombinant Pichia pastoris Using a Combined Strategy [J]. Biotechnology Bulletin, 2023, 39(6): 316-324. |
[2] | CHANG Qing, SHU Yue-rong, WANG Wen-tao, JIANG Hao, YAN Quan-de, QIAN Zheng, GAO Xue-chun, WU Jin-hong, ZHANG Yong. Heterologous Expression and Characterization of Endo-type Alginate Lyase from Yeosuana marina sp. JLT21 [J]. Biotechnology Bulletin, 2022, 38(2): 123-131. |
[3] | CAO Ru-fei, LI Ze-xuan, XU Huan, ZHANG Sha, ZHANG Min-min, DAI Feng, DUAN Xiao-lei. Expression,Purification,and Crystallization of Pif1 Helicase from Bacteroides fragilis [J]. Biotechnology Bulletin, 2021, 37(9): 180-190. |
[4] | ZHAO Zhen, WANG Sha-sha, LÜ Xing-xing, TAO Yan, XIE Jing, QIAN Yun-fang. Heterologous Expression of Cyclina sinensis Mytimacin Antibacterial Peptide Based on Recombinant Pichia pastoris [J]. Biotechnology Bulletin, 2020, 36(5): 150-158. |
[5] | MIN Qi, GAO Zi-han, YAO Yin, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Effect of Co-expression of HAC1 and Molecular Chaperone Genes on the Expression of Mannanase in Pichia pastoris [J]. Biotechnology Bulletin, 2020, 36(5): 159-168. |
[6] | GAO Yun-shan, LIU Dan-dan, XU Jun-lin, SANG Yu-nong, LIANG Xia-xia, LIU Jian-xin, WANG Wen-bin. Recombinant Expression and Immunogenicity Analysis of the Porin Protein OmpF of Aeromonas hydrophila [J]. Biotechnology Bulletin, 2019, 35(9): 234-243. |
[7] | ZHANG Ya-li, TAO Yan, XIE Jing, QIAN Yun-fang. Recombinant Expression of Mytilus coruscus Mytilin-1 Mature Peptide in Pichia pastoris and Its Antibacterial Activity [J]. Biotechnology Bulletin, 2019, 35(7): 54-60. |
[8] | HAN Chang ,SU Ling-qia, WU Jing. Recombinant Expression and Fermentation Optimization of Sulfolobus acidocaldarius ATCC 33909 Maltooligosyltrehalose Synthase in Bacillus subtilis [J]. Biotechnology Bulletin, 2017, 33(7): 162-168. |
[9] | YU Lin-gang, SU Ling-qia, WU Jing. Recombinant Expression and Characterization of Trehalase Tre F from Escherichia coli str. K-12 substr. MG1655 [J]. Biotechnology Bulletin, 2017, 33(4): 177-184. |
[10] | LIN Bo-kun, SONG Yan, LU Guo-yong, ZHAO Min, ZHONG Ming-qi, HU Zhong. Expression and Analysis of an Amylase with Agarase Activity from a Marine Bacterium [J]. Biotechnology Bulletin, 2017, 33(2): 125-130. |
[11] | CAI Dong-mei, GONG Guo-li. The Current Status and Future Perspectives of Production of Biopharmaceuticals in Escherichia coli [J]. Biotechnology Bulletin, 2016, 32(8): 34-40. |
[12] | GAO Qing-hua, HU Mei-rong, WU Fang-tong, TAO Yong, WANG Yun-peng, LUO Tong-yang, HU Chang-ying. Cloning of Gene for a Glucose Oxidase from Penicillium notatum and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2016, 32(7): 152-159. |
[13] | Ma Yue, Su Lingqia, Wu Dan, Wu Jing. Optimization of Preparing L-citrulline by Recombinant Arginine Deiminase [J]. Biotechnology Bulletin, 2015, 31(8): 180-185. |
[14] | Peng Chuanlin , Wei Chuanchuan, Wu Jianwei, Wang Yu, Xiu Jiangfan, Shang Xiaoli, Zhao Xuejun. Cloning,Expression and Sequence Analysis of Musca domestica Antifungal Peptide-1 and Musca domestica Lysozyme [J]. Biotechnology Bulletin, 2015, 31(5): 200-205. |
[15] | Zhang Qian, Wang Jianying, Lin Zhi, Jia Jia, Guo Hongtao. Recombinant Expression of Rhizopus chinensis Lipase in Aspergillus niger [J]. Biotechnology Bulletin, 2015, 31(3): 165-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||