Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (3): 149-156.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0847
Previous Articles Next Articles
WANG Zi-yan1(), WANG Jian1, ZHANG Lun1, GUI Shui-qing2, LU Xue-mei1()
Received:
2021-07-08
Online:
2022-03-26
Published:
2022-04-06
Contact:
LU Xue-mei
E-mail:694467242@qq.com;luxuemei@gdpu.edu.cn
WANG Zi-yan, WANG Jian, ZHANG Lun, GUI Shui-qing, LU Xue-mei. Study on Antibacterial Stability of Musca domestica Cecropin-MDC Against Salmonella typhimurium[J]. Biotechnology Bulletin, 2022, 38(3): 149-156.
Fig. 3 Antibacterial activity of MDC on S. typhimurium after different pH treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2,3 and 4 represent normal saline,treated MDC,ceftriaxone sodium and untreated MDC respectively. Compared with the control group(untreated MDC),*P < 0.05,**P < 0.01,n=3
Fig. 4 Antibacterial activity of MDC on S. typhimurium after different temperature treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2 and 3 are normal saline,MDC treated with different temperature and ceftriaxone sodium respectively,n=3
Fig. 5 Antibacterial activity of MDC on S. typhimurium under different light condition All the samples in the bacteriostatic plate are numbered clockwise. 1,2 and 3 are normal saline,MDC treated with different light conditions and ceftriaxone sodium respectively,n = 3
Fig. 6 Antibacterial activity of MDC on S. typhimurium after different proteases treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2,3 and 4 represent normal saline,MDC treated with protease,ceftriaxone sodium and MDC treated at 95℃ respectively. Compared with the control group(MDC treated at 95℃),****P < 0.0001,n = 3
Fig. 7 Antibacterial activity of MDC on S. typhimurium after different metal ion treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2,3 and 4 represent normal saline,untreated MDC,ceftriaxone sodium and MDC treated with metal ion respectively. Compared with the control group(untreated MDC),***P < 0.001,n = 3
Fig. 8 Antibacterial activity of MDC on S. typhimurium after different surfactant treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2,3 and 4 represent normal saline,untreated MDC,ceftriaxone sodium and MDC treated with surfactant respectively. Compared with the control group(untreated MDC),***P < 0.001,n = 3
Fig. 9 Antibacterial activity of MDC on S. typhimurium after different organic solvent treatment All the samples in the bacteriostatic plate are numbered clockwise. 1,2,3 and 4 represent normal saline,untreated MDC,ceftriaxone sodium and MDC treated with organic solvent respectively. Compared with the control group(untreated MDC),***P < 0.001,n = 3
[1] | 祁丽, 姜宁, 张爱忠, 等. 抗菌肽研发现状及其改造策略[J]. 中国畜牧兽医, 2016, 43(2):450-456. |
Qi L, Jiang N, Zhang AZ, et al. Research present status and reform strategy of antimicrobial peptides[J]. China Animal Husb Vet Med, 2016, 43(2):450-456. | |
[2] | 汪吴晶, 高金燕, 佟平, 等. 抗菌肽的作用机制、应用及改良策略[J]. 动物营养学报, 2017, 29(11):3885-3892. |
Wang WJ, Gao JY, Tong P, et al. Antimicrobial peptides:action mechanism, application and improvement strategy[J]. Chin J Animal Nutr, 2017, 29(11):3885-3892. | |
[3] | 单安山, 田昊天, 邵长轩, 等. 抗菌肽抗细菌机理研究进展[J]. 东北农业大学学报, 2018, 49(3):84-94. |
Shan AS, Tian HT, Shao CX, et al. Research advance on antibacterial mechanism of antimicrobial peptides[J]. J Northeast Agric Univ, 2018, 49(3):84-94. | |
[4] |
Lai Y, Gallo RL. AMPed up immunity:how antimicrobial peptides have multiple roles in immune defense[J]. Trends Immunol, 2009, 30(3):131-141.
doi: 10.1016/j.it.2008.12.003 URL |
[5] |
Hultmark D, Steiner H, Rasmuson T, et al. Insect immunity. purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia[J]. Eur J Biochem, 2005, 106(1):7-16.
doi: 10.1111/ejb.1980.106.issue-1 URL |
[6] |
da Costa JP, Cova M, Ferreira R, et al. Antimicrobial peptides:an alternative for innovative medicines?[J]. Appl Microbiol Biotechnol, 2015, 99(5):2023-2040.
doi: 10.1007/s00253-015-6375-x URL |
[7] |
Zhang J, Movahedi A, Xu J, et al. In vitro production and antifungal activity of peptide ABP-dHC-cecropin A[J]. J Biotechnol, 2015, 199:47-54.
doi: 10.1016/j.jbiotec.2015.02.018 URL |
[8] |
Hemshekhar M, Anaparti V, Mookherjee N. Functions of cationic host defense peptides in immunity[J]. Pharmaceuticals, 2016, 9(3):40.
doi: 10.3390/ph9030040 URL |
[9] |
Abedinzadeh M, Gaeini M, Sardari S. Natural antimicrobial peptides against Mycobacterium tuberculosis[J]. J Antimicrob Chemother, 2015, 70(5):1285-1289.
doi: 10.1093/jac/dku570 pmid: 25681127 |
[10] |
Steiner H, Hultmark D, Engström A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246-248. 1981[J]. J Immunol, 2009, 182(11):6635-6637.
pmid: 19454655 |
[11] |
Luz C, Saladino F, Luciano FB, et al. In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum[J]. LWT Food Sci Technol, 2017, 81:128-135.
doi: 10.1016/j.lwt.2017.03.053 URL |
[12] |
Kim JK, Lee E, Shin S, et al. Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly, Papilio xuthus[J]. J Biol Chem, 2011, 286(48):41296-41311.
doi: 10.1074/jbc.M111.269225 URL |
[13] |
Al-Rayahi IA, Sanyi RH. The overlapping roles of antimicrobial peptides and complement in recruitment and activation of tumor-associated inflammatory cells[J]. Front Immunol, 2015, 6:2.
doi: 10.3389/fimmu.2015.00002 pmid: 25657649 |
[14] |
Chiu CH, Su LH, Chu C. Salmonella enterica serotype Choleraesuis:epidemiology, pathogenesis, clinical disease, and treatment[J]. Clin Microbiol Rev, 2004, 17(2):311-322.
doi: 10.1128/CMR.17.2.311-322.2004 URL |
[15] |
Kozak GK, MacDonald D, Landry L, et al. Foodborne outbreaks in Canada linked to produce:2001 through 2009[J]. J Food Prot, 2013, 76(1):173-183.
doi: 10.4315/0362-028X.JFP-12-126 URL |
[16] |
Schikora A, Garcia AV, Hirt H. Plants as alternative hosts for Salmonella[J]. Trends Plant Sci, 2012, 17(5):245-249.
doi: 10.1016/j.tplants.2012.03.007 pmid: 22513107 |
[17] |
Swearingen MC, Porwollik S, Desai PT, et al. Virulence of 32 Salmonella strains in mice[J]. PLoS One, 2012, 7(4):e36043.
doi: 10.1371/journal.pone.0036043 URL |
[18] |
Lu X, Shen J, Jin X, et al. Bactericidal activity of Musca domestica cecropin(Mdc)on multidrug-resistant clinical isolate of Escherichia coli[J]. Appl Microbiol Biotechnol, 2012, 95(4):939-945.
doi: 10.1007/s00253-011-3793-2 pmid: 22202966 |
[19] |
Zhang L, Gui SQ, Liang ZB, et al. Musca domestica cecropin(mdc)alleviates Salmonella typhimurium-induced colonic mucosal barrier impairment:associating with inflammatory and oxidative stress response, tight junction as well as intestinal flora[J]. Front Microbiol, 2019, 10:522.
doi: 10.3389/fmicb.2019.00522 pmid: 30930887 |
[20] | 曾佳利, 桂水清, 卢雪梅. Musca domestica cecropin协同头孢曲松钠抗鼠伤寒沙门氏菌及生物被膜作用研究[J]. 中国人兽共患病学报, 2021, 37(2):101-108. |
Zeng JL, Gui SQ, Lu XM. Musca domestica cecropin synergizes with ceftriaxone sodium anti-Salmonella typhimurium and has an anti-biofilm effect[J]. Chin J Zoonoses, 2021, 37(2):101-108. | |
[21] | 张坚磊, 帅真. 细菌耐药性的新问题[J]. 国外医学临床生物化学与检验学分册, 2001, 22(1):36-37. |
Zhang JL, Shuai Z. The new problem of bacterial resistance[J]. Foreign Med Sci, 2001, 22(1):36-37. | |
[22] |
Petrovska L, Mather AE, AbuOun M, et al. Microevolution of monophasic Salmonella typhimurium during epidemic, united kingdom, 2005-2010[J]. Emerg Infect Dis, 2016, 22(4):617-624.
doi: 10.3201/eid2204.150531 pmid: 26982594 |
[23] | 李云香, 姚倩, 任玫, 等. 抗菌肽作用机制研究进展[J]. 动物医学进展, 2019, 40(9):98-103. |
Li YX, Yao Q, Ren M, et al. Progress on action mechanisms of antimicrobial peptides[J]. Prog Vet Med, 2019, 40(9):98-103. | |
[24] |
Tang WT, Yuan HN, Zhang H, et al. An antimicrobial peptide screened from casein hydrolyzate by Saccharomyces cerevisiae cell membrane affinity method[J]. Food Control, 2015, 50:413-422.
doi: 10.1016/j.foodcont.2014.09.030 URL |
[25] | 任娇. 山羊乳酪蛋白抗菌肽稳定性研究及其功能评价[D]. 杨凌:西北农林科技大学, 2014. |
Ren J. Study on stability and function evaluation of antibacterial peptides derived from goat casein[D]. Yangling:Northwest A & F University, 2014. | |
[26] | 周世成. 小麦蛋白抗菌肽的制备及其特性研究[D]. 郑州:河南工业大学, 2011. |
Zhou SC. The studies on preparation and properties of antimicrobial peptides from wheat gluten[D]. Zhengzhou:Henan University of Technology, 2011. | |
[27] | 董柱, 钟亨任, 罗文杰, 等. 海南产沼蛙皮肤temporin家族抗菌肽抗菌活性及稳定性研究[J]. 海南大学学报:自然科学版, 2016, 34(3):250-256. |
Dong Z, Zhong HR, Luo WJ, et al. Antimicrobial activities and influential factors of temporin family antimicrobial peptides derived from Hylarana guentheri of Hainan[J]. Nat Sci J Hainan Univ, 2016, 34(3):250-256. | |
[28] | 李军, 李平兰, 王顺, 等. 萝卜籽蛋白提取物对鲟鱼腐败菌抑制作用及其理化性质的研究[J]. 食品科学, 2018, 39(13):41-46. |
Li J, Li PL, Wang S, et al. Inhibition of sturgeon spoilage bacteria by protein extract from radish seed and its physicochemical characteristics[J]. Food Sci, 2018, 39(13):41-46. | |
[29] | 谷翰杰. 深海热液一株枯草芽孢杆菌和一种抗脂多糖因子的鉴定与分析[D]. 青岛:中国科学院大学(中国科学院海洋研究所), 2019. |
Gu HJ. Identification and characterization of a Bacillus subtilis isolate and an anti-lipopolysaccharide factor from deep-seahydrothermal vent[D]. Qingdao:University of the Chinese Academy of Sciences(Institute of Oceanology, Chinese Academy of Sciences), 2019. |
[1] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[2] | YAN Tao, CHEN Ke-ke, YANG Heng-fei, ZHU Jian-guo, XIA Jiu-xue, FANG Shu-guang. Study on Factors Affecting the Storage Survival Rates of Probiotic Bacteria Powder [J]. Biotechnology Bulletin, 2023, 39(4): 296-303. |
[3] | SONG Hai-na, WU Xin-tong, YANG Lu-yu, GENG Xi-ning, ZHANG Hua-min, SONG Xiao-long. Selection and Validation of Reference Genes for RT-qPCR in Allium tuberosum Infected by Botrytis squamosa [J]. Biotechnology Bulletin, 2023, 39(3): 101-115. |
[4] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[5] | YANG Jun-zhao, ZHANG Xin-rui, SUN Qing-yang, ZHENG Fei. Affecting Mechanism of Loop B3 on the Function of GH7 Endoglucanase [J]. Biotechnology Bulletin, 2023, 39(10): 281-291. |
[6] | LI Sheng-yan, LI Xiang-yin, LI Peng-cheng, ZHANG Ming-jun, ZHANG Jie, LANG Zhi-hong. Identification of Target Traits and Genetic Stability of Transgenic Maize 2HVB5 [J]. Biotechnology Bulletin, 2023, 39(1): 21-30. |
[7] | LIU Xiao-li, TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang. Research Progress in Non-antibiotic Active Substances Against Helicobacter pylori [J]. Biotechnology Bulletin, 2022, 38(9): 96-105. |
[8] | LIANG Xing-xing, WANG Jia, XU Wen-tao. Research Progress in Phosphorylation Modification of Antiviral Nucleotide Analogs [J]. Biotechnology Bulletin, 2022, 38(2): 218-226. |
[9] | ZHANG Chen, ZHANG Tong-tong, LIU Hai-ping. Screening and Identification of Ethylene-forming Enzymes with High Activity and Thermostability [J]. Biotechnology Bulletin, 2022, 38(11): 269-276. |
[10] | JIANG Di, XU Chun-cheng. Research Progress in the Succession of Microbial Communities in Total Mixed Ration Silage [J]. Biotechnology Bulletin, 2021, 37(9): 31-38. |
[11] | WANG Xiao-he, GU Xi-rong, QI Shun-ju, LI Jie, CUI Yao, LI De-xia, YANG Li-hui. Antioxidant Activity,Antibacterial Activity and Volatile Components of Extracts from the Branches and Leaves of Torreya fargesii Franch. [J]. Biotechnology Bulletin, 2021, 37(8): 152-161. |
[12] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
[13] | GONG Xiao-hui, YANG Min, LI Shu-ting, LIN Sheng-hao, XU Wen-tao. Progress on Antibacterial Mechanism,Activity and Application of Silver Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(5): 212-220. |
[14] | GAO Zhen-feng, ZHAO Jia. Study on Antifungal Properties of Fermentation Broth from Streptomyces albidoflavus G-1 and Optimization of Its Fermentation Condition [J]. Biotechnology Bulletin, 2021, 37(3): 53-64. |
[15] | CHEN Chun, SU Ling-qia, XIA Wei, WU Jing. Improved the Thermostability of MTHase from Arthrobacter ramosus by Directed Evolution [J]. Biotechnology Bulletin, 2021, 37(3): 84-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||