Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (9): 215-225.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1507
Previous Articles Next Articles
ZHANG Kai-ping1(), LIU Yan-li1, TU Mian-liang1, LI Ji-wei1, WU Wen-biao2()
Received:
2021-11-28
Online:
2022-09-26
Published:
2022-10-11
Contact:
WU Wen-biao
E-mail:1453571341@qq.com;wbwu2006@sina.com
ZHANG Kai-ping, LIU Yan-li, TU Mian-liang, LI Ji-wei, WU Wen-biao. Optimization of Producing Cellulase by Aspergillus fumigatus A-16 and Its Enzymatic Properties[J]. Biotechnology Bulletin, 2022, 38(9): 215-225.
菌株编号 Number of strain | D/d值 D/d value | 羧甲基纤维素酶活力 CMCase /(U·mL-1) | 滤纸酶活力 FPA /(U·mL-1) |
---|---|---|---|
A-02 | 5.83±0.66 | 926.09±65.43 | 289.41±23.28 |
A-07 | 5.65±0.71 | 757.26±17.55 | 116.52±16.65 |
A-10 | 7.12±0.48 | 1487.39±85.23 | 418.14±43.12 |
A-11 | 6.64±0.50 | 1004.58±36.52 | 396.41±40.33 |
A-16 | 9.87±0.42 | 2516.24±117.41 | 686.48±43.20 |
A-19 | 8.15±0.17 | 1986.61±123.28 | 768.87±27.40 |
A-22 | 8.41±0.24 | 2387.40±67.20 | 718.41±33.11 |
A-26 | 7.57±0.30 | 2060.24±25.64 | 671.92±40.29 |
Table 1 Enzymatic activity of the cellulase-producing strains
菌株编号 Number of strain | D/d值 D/d value | 羧甲基纤维素酶活力 CMCase /(U·mL-1) | 滤纸酶活力 FPA /(U·mL-1) |
---|---|---|---|
A-02 | 5.83±0.66 | 926.09±65.43 | 289.41±23.28 |
A-07 | 5.65±0.71 | 757.26±17.55 | 116.52±16.65 |
A-10 | 7.12±0.48 | 1487.39±85.23 | 418.14±43.12 |
A-11 | 6.64±0.50 | 1004.58±36.52 | 396.41±40.33 |
A-16 | 9.87±0.42 | 2516.24±117.41 | 686.48±43.20 |
A-19 | 8.15±0.17 | 1986.61±123.28 | 768.87±27.40 |
A-22 | 8.41±0.24 | 2387.40±67.20 | 718.41±33.11 |
A-26 | 7.57±0.30 | 2060.24±25.64 | 671.92±40.29 |
Fig.3 Effects of straw powder on the cellulase activity of strain A. fumigatus A-16 Different lowercase letters indicate significant differences(P<0.05). The same below
Fig.7 Response surface diagram A:Interaction of straw powder and initial pH. B:Interaction of straw powder and fermentation temperature. C:Interaction of straw powder and fermentation time. D:Interaction of pH and fermentation temperature. E:Interaction of pH and fermentation time. F:Interaction of fermentation temperature and fermentation time
试验号 Test No. | 稻草粉添加量 Straw powder/ (g·100 mL-1) | pH | 发酵温度 Fermentation temperature/℃ | 发酵时间 Fermentation time/d | 羧甲基纤维素 酶活力 CMCase / (U·mL-1) |
---|---|---|---|---|---|
1 | 10 | 6.0 | 75 | 5 | 2 063.71±3.15 |
2 | 6 | 5.0 | 65 | 5 | 2 531.72±4.86 |
3 | 6 | 6.0 | 65 | 6 | 2 657.27±5.22 |
4 | 6 | 7.0 | 65 | 5 | 2 513.37±1.82 |
5 | 8 | 7.0 | 65 | 6 | 2 086.14±5.44 |
6 | 8 | 5.0 | 65 | 6 | 2 447.22±2.18 |
7 | 10 | 5.0 | 65 | 5 | 2 073.50±2.97 |
8 | 8 | 7.0 | 65 | 4 | 2 413.23±4.92 |
9 | 8 | 6.0 | 65 | 5 | 2 888.50±2.83 |
10 | 6 | 6.0 | 65 | 4 | 2 481.15±2.24 |
11 | 8 | 6.0 | 55 | 6 | 2 370.83±3.01 |
12 | 8 | 6.0 | 65 | 5 | 2 954.07±2.16 |
13 | 10 | 7.0 | 65 | 5 | 2 018.95±3.68 |
14 | 8 | 7.0 | 55 | 5 | 2 004.27±6.20 |
15 | 8 | 5.0 | 55 | 5 | 2 274.48±4.97 |
16 | 10 | 6.0 | 65 | 6 | 2 168.28±2.94 |
17 | 10 | 6.0 | 55 | 5 | 2 075.56±4.99 |
18 | 8 | 7.0 | 75 | 5 | 2 635.90±3.13 |
19 | 8 | 6.0 | 65 | 5 | 2 951.56±3.51 |
20 | 10 | 6.0 | 65 | 4 | 2 217.78±4.23 |
21 | 6 | 6.0 | 75 | 5 | 2 406.44±7.46 |
22 | 8 | 6.0 | 65 | 5 | 2 898.67±4.35 |
23 | 8 | 5.0 | 65 | 4 | 2 536.43±3.79 |
24 | 6 | 6.0 | 55 | 5 | 2 618.73±4.34 |
25 | 8 | 6.0 | 75 | 6 | 2 267.33±5.75 |
26 | 8 | 5.0 | 75 | 5 | 2 288.70±5.14 |
27 | 8 | 6.0 | 75 | 4 | 2 298.64±2.95 |
28 | 8 | 6.0 | 65 | 5 | 2 820.48±3.77 |
29 | 8 | 6.0 | 55 | 4 | 2 258.87±3.49 |
Table 2 Response surface design and test results
试验号 Test No. | 稻草粉添加量 Straw powder/ (g·100 mL-1) | pH | 发酵温度 Fermentation temperature/℃ | 发酵时间 Fermentation time/d | 羧甲基纤维素 酶活力 CMCase / (U·mL-1) |
---|---|---|---|---|---|
1 | 10 | 6.0 | 75 | 5 | 2 063.71±3.15 |
2 | 6 | 5.0 | 65 | 5 | 2 531.72±4.86 |
3 | 6 | 6.0 | 65 | 6 | 2 657.27±5.22 |
4 | 6 | 7.0 | 65 | 5 | 2 513.37±1.82 |
5 | 8 | 7.0 | 65 | 6 | 2 086.14±5.44 |
6 | 8 | 5.0 | 65 | 6 | 2 447.22±2.18 |
7 | 10 | 5.0 | 65 | 5 | 2 073.50±2.97 |
8 | 8 | 7.0 | 65 | 4 | 2 413.23±4.92 |
9 | 8 | 6.0 | 65 | 5 | 2 888.50±2.83 |
10 | 6 | 6.0 | 65 | 4 | 2 481.15±2.24 |
11 | 8 | 6.0 | 55 | 6 | 2 370.83±3.01 |
12 | 8 | 6.0 | 65 | 5 | 2 954.07±2.16 |
13 | 10 | 7.0 | 65 | 5 | 2 018.95±3.68 |
14 | 8 | 7.0 | 55 | 5 | 2 004.27±6.20 |
15 | 8 | 5.0 | 55 | 5 | 2 274.48±4.97 |
16 | 10 | 6.0 | 65 | 6 | 2 168.28±2.94 |
17 | 10 | 6.0 | 55 | 5 | 2 075.56±4.99 |
18 | 8 | 7.0 | 75 | 5 | 2 635.90±3.13 |
19 | 8 | 6.0 | 65 | 5 | 2 951.56±3.51 |
20 | 10 | 6.0 | 65 | 4 | 2 217.78±4.23 |
21 | 6 | 6.0 | 75 | 5 | 2 406.44±7.46 |
22 | 8 | 6.0 | 65 | 5 | 2 898.67±4.35 |
23 | 8 | 5.0 | 65 | 4 | 2 536.43±3.79 |
24 | 6 | 6.0 | 55 | 5 | 2 618.73±4.34 |
25 | 8 | 6.0 | 75 | 6 | 2 267.33±5.75 |
26 | 8 | 5.0 | 75 | 5 | 2 288.70±5.14 |
27 | 8 | 6.0 | 75 | 4 | 2 298.64±2.95 |
28 | 8 | 6.0 | 65 | 5 | 2 820.48±3.77 |
29 | 8 | 6.0 | 55 | 4 | 2 258.87±3.49 |
方差来源 Source | 总偏差平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F | P | 显著性 Significance |
---|---|---|---|---|---|---|
Model | 2.224E+006 | 14 | 1.589E+005 | 9.61 | <0.0001 | ** |
A | 5.593E+005 | 1 | 5.593E+005 | 33.84 | <0.0001 | ** |
B | 19200.00 | 1 | 19200.00 | 1.16 | 0.2994 | |
C | 10680.33 | 1 | 10680.33 | 0.65 | 0.4349 | |
D | 3640.08 | 1 | 3640.08 | 0.22 | 0.6461 | |
AB | 334.89 | 1 | 3640.08 | 0.02 | 0.8888 | |
AC | 10040.04 | 1 | 10040.04 | 0.61 | 0.4487 | |
AD | 12746.41 | 1 | 12746.41 | 0.77 | 0.3947 | |
BC | 95326.56 | 1 | 95326.56 | 5.77 | 0.0308 | * |
BD | 14149.10 | 1 | 14149.10 | 0.31 | 0.5861 | |
CD | 5133.72 | 1 | 5133.72 | 0.86 | 0.3705 | |
A2 | 5.886E+005 | 1 | 5.886E+005 | 35.61 | < 0.0001 | ** |
B2 | 5.899E+005 | 1 | 5.899E+005 | 35.69 | < 0.0001 | ** |
C2 | 7.240E+005 | 1 | 7.240E+005 | 43.80 | < 0.0001 | ** |
D2 | 4.190E+005 | 1 | 4.190E+005 | 25.35 | 0.0002 | ** |
残差 | 2.314E+005 | 14 | 16529.14 | |||
失拟项 | 2.108E+005 | 10 | 21083.15 | 4.10 | 0.0932 | |
纯误差 | 20576.45 | 4 | 5144.11 | |||
所有项 | 2.455E+006 | 28 |
Table 3 Analysis of variance of the response surface model and the regression equations
方差来源 Source | 总偏差平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F | P | 显著性 Significance |
---|---|---|---|---|---|---|
Model | 2.224E+006 | 14 | 1.589E+005 | 9.61 | <0.0001 | ** |
A | 5.593E+005 | 1 | 5.593E+005 | 33.84 | <0.0001 | ** |
B | 19200.00 | 1 | 19200.00 | 1.16 | 0.2994 | |
C | 10680.33 | 1 | 10680.33 | 0.65 | 0.4349 | |
D | 3640.08 | 1 | 3640.08 | 0.22 | 0.6461 | |
AB | 334.89 | 1 | 3640.08 | 0.02 | 0.8888 | |
AC | 10040.04 | 1 | 10040.04 | 0.61 | 0.4487 | |
AD | 12746.41 | 1 | 12746.41 | 0.77 | 0.3947 | |
BC | 95326.56 | 1 | 95326.56 | 5.77 | 0.0308 | * |
BD | 14149.10 | 1 | 14149.10 | 0.31 | 0.5861 | |
CD | 5133.72 | 1 | 5133.72 | 0.86 | 0.3705 | |
A2 | 5.886E+005 | 1 | 5.886E+005 | 35.61 | < 0.0001 | ** |
B2 | 5.899E+005 | 1 | 5.899E+005 | 35.69 | < 0.0001 | ** |
C2 | 7.240E+005 | 1 | 7.240E+005 | 43.80 | < 0.0001 | ** |
D2 | 4.190E+005 | 1 | 4.190E+005 | 25.35 | 0.0002 | ** |
残差 | 2.314E+005 | 14 | 16529.14 | |||
失拟项 | 2.108E+005 | 10 | 21083.15 | 4.10 | 0.0932 | |
纯误差 | 20576.45 | 4 | 5144.11 | |||
所有项 | 2.455E+006 | 28 |
Fig.8 Optimal temperature of cellulase activity of strain A-16 and and its thermo-stabilities A:Optimal temperature for CMCase and FPA enzymatic activity. B:Thermo-stabilities of the CMCase and FPA
Fig. 9 Optimal pH of cellulase activity of strain A-16 and its pH stabilities A:Optimal pH for CMCase and FPA enzymatic activity. B:pH stabilities of the CMCase and FPA
[1] |
Souii A, Guesmi A, Ouertani R, et al. Carboxymethyl cellulase production by extremotolerant bacteria in low-cost media and application in enzymatic saccharification of Stevia biomass[J]. Waste Biomass Valorization, 2020, 11(5):2111-2122.
doi: 10.1007/s12649-018-0496-2 URL |
[2] |
Mehboob N, Asad MJ, Asgher M, et al. Exploring thermophilic cellulolytic enzyme production potential of Aspergillus fumigatus by the solid-state fermentation of wheat straw[J]. Appl Biochem Biotechnol, 2014, 172(7):3646-3655.
doi: 10.1007/s12010-014-0796-3 pmid: 24562980 |
[3] |
Sohail M, Ahmad A, Khan SA. Production of cellulase from Aspergillus terreus MS105 on crude and commercially purified substrates[J]. 3 Biotech, 2016, 6(1):103.
doi: 10.1007/s13205-016-0420-z URL |
[4] |
Mahmood RT, Asad MJ, Mehboob N, et al. Production, purification, and characterization of exoglucanase by Aspergillus fumigatus[J]. Appl Biochem Biotechnol, 2013, 170(4):895-908.
doi: 10.1007/s12010-013-0227-x pmid: 23615734 |
[5] |
Sharma HK, Xu CC, Qin WS. Co-culturing of novel Bacillus species isolated from municipal sludge and gut of red wiggler worm for improving CMCase activity[J]. Waste Biomass Valorization, 2020, 11(5):2047-2058.
doi: 10.1007/s12649-018-0448-x URL |
[6] |
Zanirun Z, Bahrin EK, Lai-Yee P, et al. Effect of physical and chemical properties of oil palm empty fruit bunch, decanter cake and sago pith residue on cellulases production by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2[J]. Appl Biochem Biotechnol, 2014, 172(1):423-435.
doi: 10.1007/s12010-013-0530-6 URL |
[7] |
Horn SJ, Vaaje-Kolstad G, Westereng B, et al. Novel enzymes for the degradation of cellulose[J]. Biotechnol Biofuels, 2012, 5(1):45.
doi: 10.1186/1754-6834-5-45 pmid: 22747961 |
[8] |
Zhang K, Pei ZJ, Wang DH. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals:a review[J]. Bioresour Technol, 2016, 199:21-33.
doi: 10.1016/j.biortech.2015.08.102 URL |
[9] |
Wang D, Sun J, Yu HL, et al. Maximum saccharification of cellulose complex by an enzyme cocktail supplemented with cellulase from newly isolated Aspergillus fumigatus ECU0811[J]. Appl Biochem Biotechnol, 2012, 166(1):176-186.
doi: 10.1007/s12010-011-9414-9 pmid: 22086563 |
[10] | 李乐, 李明星, 汤国雄, 等. 一株纤维素酶产生菌的筛选与产酶特性研究[J]. 环境科技, 2019, 32(1):24-29. |
Li L, Li MX, Tang GX, et al. Optimization of enzyme production conditions for a cellulase-producing strain[J]. Environ Sci Technol, 2019, 32(1):24-29. | |
[11] |
Miao JX, Wang MM, Ma L, et al. Effects of amino acids on the lignocellulose degradation by Aspergillus fumigatus Z5:insights into performance, transcriptional, and proteomic profiles[J]. Biotechnol Biofuels, 2019, 12:4.
doi: 10.1186/s13068-018-1350-2 URL |
[12] |
Srivastava N, Rawat R, Sharma R, et al. Effect of nickel-cobaltite nanoparticles on production and thermostability of cellulases from newly isolated thermotolerant Aspergillus fumigatus NS(class:Eurotiomycetes)[J]. Appl Biochem Biotechnol, 2014, 174(3):1092-1103.
doi: 10.1007/s12010-014-0940-0 pmid: 24801407 |
[13] |
Islam F, Roy N. Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses[J]. BMC Res Notes, 2018, 11(1):445.
doi: 10.1186/s13104-018-3558-4 pmid: 29973263 |
[14] |
El-Ghonemy DH, Ali TH, El-Bondkly AM, et al. Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase[J]. Antonie Van Leeuwenhoek, 2014, 106(5):853-864.
doi: 10.1007/s10482-014-0255-8 pmid: 25119245 |
[15] |
Grigorevski-Lima AL, da Vinha FNM, Souza DT, et al. Aspergillus fumigatus thermophilic and acidophilic endoglucanases[J]. Appl Biochem Biotechnol, 2009, 155(1-3):321-329.
doi: 10.1007/s12010-008-8482-y pmid: 19127443 |
[16] |
Das A, Paul T, Ghosh P, et al. Kinetic study of a glucose tolerant β-glucosidase from Aspergillus fumigatus ABK9 entrapped into alginate beads[J]. Waste Biomass Valorization, 2015, 6(1):53-61.
doi: 10.1007/s12649-014-9329-0 URL |
[17] |
Sharma M, Soni R, Nazir A, et al. Evaluation of glycosyl hydrolases in the secretome of Aspergillus fumigatus and saccharification of alkali-treated rice straw[J]. Appl Biochem Biotechnol, 2011, 163(5):577-591.
doi: 10.1007/s12010-010-9064-3 pmid: 20730507 |
[18] | 于岚, 程芳, 邵文琦, 等. 一株嗜热纤维素酶生产菌的分离、鉴定及酶学研究[J]. 安徽农业科学, 2013, 41(17):7413-7417. |
Yu L, Cheng F, Shao WQ, et al. Study on isolation, identification and characterization of a thermophilic cellulase-producing strain[J]. J Anhui Agric Sci, 2013, 41(17):7413-7417. | |
[19] |
Lin CY, Shen ZC, Qin WS. Characterization of xylanase and cellulase produced by a newly isolated Aspergillus fumigatus N2 and its efficient saccharification of barley straw[J]. Appl Biochem Biotechnol, 2017, 182(2):559-569.
doi: 10.1007/s12010-016-2344-9 URL |
[20] |
Saroj P, Manasa P, Narasimhulu K. Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation[J]. Bioresour Bioprocess, 2018, 5:31.
doi: 10.1186/s40643-018-0216-6 URL |
[21] | 谢洁, 商必志, 任慧爽, 等. 一株纤维素酶产生菌B. cereus JYMB2菌株的筛选鉴定[J]. 西南大学学报:自然科学版, 2016, 38(5):45-51. |
Xie J, Shang BZ, Ren HS, et al. Screening and identification of a cellulase-producing strain of Bacillus cereus-JYMB2[J]. J Southwest Univ Nat Sci Ed, 2016, 38(5):45-51. | |
[22] | 马振刚, 熊亮, 张真, 等. 高产碱性纤维素酶细菌的筛选鉴定及其酶学特性与发酵条件研究[J]. 南方农业学报, 2021, 52(3):722-731. |
Ma ZG, Xiong L, Zhang Z, et al. Screening and identification of a strain with high yield of alkaline cellulase and its enzyme characterizations and fermentation conditions[J]. J South Agric, 2021, 52(3):722-731. | |
[23] | 魏姣, 万学瑞, 吴润, 等. 产纤维素酶真菌菌株的分离筛选及产酶条件优化[J]. 甘肃农业大学学报, 2016, 51(2):8-15. |
Wei J, Wan XR, Wu R, et al. Isolation and screening of fungi strains producing cellulase and optimization of conditions for enzyme production[J]. J Gansu Agric Univ, 2016, 51(2):8-15. | |
[24] | 何楠, 令利军, 冯蕾, 等. 1株产纤维素酶细菌的筛选、鉴定及生长特性[J]. 微生物学杂志, 2017, 37(1):43-49. |
He N, Ling LJ, Feng L, et al. Isolation, identification and growth characteristics of a cellulase-producing bacterium[J]. J Microbiol, 2017, 37(1):43-49. | |
[25] | 李婷, 王玥, 刘中珊, 等. 一株降解纤维素的低温放线菌Streptomyces azureus及产酶条件优化[J]. 中国农学通报, 2021, 37(32):25-33. |
Li T, Wang Y, Liu ZS, et al. A novel low temperature cellulose-degrading strain Streptomyces azureus and its enzymatic production condition optimization[J]. Chin Agric Sci Bull, 2021, 37(32):25-33. | |
[26] | 赵龙妹, 陈林, 杜东晓, 等. 产纤维素酶细菌的筛选鉴定与特性分析[J]. 中国农学通报, 2021, 37(30):83-88. |
Zhao LM, Chen L, Du DX, et al. Screening, identification and characteristic analysis of cellulase-producing bacteria[J]. Chin Agric Sci Bull, 2021, 37(30):83-88. | |
[27] | 蒋芳, 刘松青, 甄阳光, 等. 一株产高温纤维素酶菌株的分离筛选[J]. 纤维素科学与技术, 2015, 23(2):50-54. |
Jiang F, Liu SQ, Zhen YG, et al. Isolation and screening of a thermophilic cellulose bacterial strain[J]. J Cellul Sci Technol, 2015, 23(2):50-54. | |
[28] | 金伟, 陈文静, 缪礼鸿, 等. 1株耐热纤维素酶产生菌的筛选及其酶学特性[J]. 江苏农业科学, 2017, 45(20):272-274. |
Jin W, Chen WJ, Miao LH, et al. Screening of a heat-resistant cellulase-producing strain and enzymatic specificity[J]. Jiangsu Agric Sci, 2017, 45(20):272-274. |
[1] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[2] | ZHANG Jing, ZHANG Hao-rui, CAO Yun, HUANG Hong-ying, QU Ping, ZHANG Zhi-ping. Research Progress in Thermophilic Microorganisms for Cellulose Degradation [J]. Biotechnology Bulletin, 2023, 39(6): 73-87. |
[3] | ZHAO Sai-sai, ZHANG Xiao-dan, JIA Xiao-yan, TAO Da-wei, LIU Ke-yu, NING Xi-bin. Investigation on the Complex Mutagenesis Selection of High-yield Nitrate Reductase Strain Staphylococcus simulans ZSJ6 and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2023, 39(4): 103-113. |
[4] | MA Yu-qian, SUN Dong-hui, YUE Hao-feng, XIN Jia-yu, LIU Ning, CAO Zhi-yan. Identification, Heterologous Expression and Functional Analysis of a GH61 Family Glycoside Hydrolase from Setosphaeria turcica with the Assisting Function in Degrading Cellulose [J]. Biotechnology Bulletin, 2023, 39(4): 124-135. |
[5] | WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect [J]. Biotechnology Bulletin, 2022, 38(4): 217-229. |
[6] | CHANG Qing, SHU Yue-rong, WANG Wen-tao, JIANG Hao, YAN Quan-de, QIAN Zheng, GAO Xue-chun, WU Jin-hong, ZHANG Yong. Heterologous Expression and Characterization of Endo-type Alginate Lyase from Yeosuana marina sp. JLT21 [J]. Biotechnology Bulletin, 2022, 38(2): 123-131. |
[7] | ZHANG Gong-you, WANG Yi-han, GUO Min, ZHANG Ting-ting, WANG Bing, LIU Hong-mei. Isolation and Identification of a Cellulase-producing Endophytic Fungus in Paris polyphylla var. yunnanensis [J]. Biotechnology Bulletin, 2022, 38(2): 95-104. |
[8] | TIAN Jia-hui, FENG Jia-li, LU Jun-hua, MAO Lin-jing, HU Zhu-ran, WANG Ying, CHU Jie. Isolation,Purification and Characterization of Laccase LacT-1 from Cerrena unicolor [J]. Biotechnology Bulletin, 2021, 37(8): 186-194. |
[9] | TANG Hao, SUN Can, LI Yuan-qiu, LUO Chao-bing. Screening and Genome Sequencing of Cellulytic Bacterium Raoultella ornithinolytica LL1 [J]. Biotechnology Bulletin, 2021, 37(6): 85-96. |
[10] | LIU Shan, YE Wei, ZHU Mu-zi, LI Sai-ni, DENG Zhang-shuang, ZHANG Wei-min. Cloning,Expression and Characterization of a Novel Acyltransferase GPAT [J]. Biotechnology Bulletin, 2021, 37(11): 257-266. |
[11] | HU Fang, DONG Xu, SHI Chang-wei, WU Xue-dong. Progress in Ultrasound Intensification for Enzymatic Hydrolysis of Lignocellulose [J]. Biotechnology Bulletin, 2021, 37(10): 234-244. |
[12] | ZHAO Hai-yan, SONG Chen-bin, LIU Zheng-ya, MA Xing-rong, SHANG Hui-hui, LI An-hua, GUAN Xian-jun, WANG Jian-she. Cloning,Recombinant Expression and Enzymatic Properties of α-Amylase Gene from Laceyella sp. [J]. Biotechnology Bulletin, 2020, 36(8): 23-33. |
[13] | LIU Deng, LIU Jun-hong. Research Progress of Thermophilic Lignocellulase in Cellulose Ethanol Production [J]. Biotechnology Bulletin, 2020, 36(8): 185-193. |
[14] | FENG Guang-zhi, SHI Hui, LIU Bo, WU Yu-ting, WANG Yue-lin, SHI Yu. Screening and Identification of Cellulase-producing Strains Isolated from Crayfish Intestine [J]. Biotechnology Bulletin, 2020, 36(2): 65-70. |
[15] | YANG Bin, LI Xiao-bo, ZHOU Lin, OU Pei-yu, JIN Xiao-bao. Identification and Enzymatic Properties of Strain YB Simultaneously Secreting Highly Efficient Cellulase and Xylanase [J]. Biotechnology Bulletin, 2020, 36(2): 110-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||