Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (4): 136-147.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0533
Previous Articles Next Articles
LAI Rui-lian(), FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting()
Received:
2022-04-29
Online:
2023-04-26
Published:
2023-05-16
LAI Rui-lian, FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting. Genome-wide Identification of Catalase Family Genes and Expression Analysis in Kiwifruit[J]. Biotechnology Bulletin, 2023, 39(4): 136-147.
蛋白名称 Protein name | 氨基酸 Amino acids | 分子量 Molecular weight/kD | 等电点 Theoretical pI | 不稳定系数 Instability index | 脂肪系数 Aliphatic index | 亲水性系数 Grand average of hydropathicity |
---|---|---|---|---|---|---|
AcCAT1 | 450 | 52.16 | 6.85 | 39.98 | 69.93 | -0.585 |
AcCAT2 | 757 | 87.31 | 7.24 | 48.49 | 72.60 | -0.631 |
AcCAT3 | 1 285 | 148.21 | 5.89 | 42.86 | 79.04 | -0.420 |
AcCAT4 | 459 | 53.40 | 7.82 | 38.03 | 76.06 | -0.497 |
AcCAT5 | 501 | 58.01 | 6.39 | 44.37 | 71.40 | -0.537 |
AcCAT6 | 526 | 60.67 | 6.53 | 41.73 | 70.06 | -0.535 |
AcCAT7 | 302 | 35.33 | 6.09 | 44.08 | 73.61 | -0.542 |
AcCAT8 | 490 | 57.08 | 6.88 | 38.26 | 69.63 | -0.536 |
AcCAT9 | 91 | 10.34 | 5.90 | 37.97 | 63.19 | -0.676 |
Table 1 Physicochemical properties of AcCAT proteins in A. chinensis
蛋白名称 Protein name | 氨基酸 Amino acids | 分子量 Molecular weight/kD | 等电点 Theoretical pI | 不稳定系数 Instability index | 脂肪系数 Aliphatic index | 亲水性系数 Grand average of hydropathicity |
---|---|---|---|---|---|---|
AcCAT1 | 450 | 52.16 | 6.85 | 39.98 | 69.93 | -0.585 |
AcCAT2 | 757 | 87.31 | 7.24 | 48.49 | 72.60 | -0.631 |
AcCAT3 | 1 285 | 148.21 | 5.89 | 42.86 | 79.04 | -0.420 |
AcCAT4 | 459 | 53.40 | 7.82 | 38.03 | 76.06 | -0.497 |
AcCAT5 | 501 | 58.01 | 6.39 | 44.37 | 71.40 | -0.537 |
AcCAT6 | 526 | 60.67 | 6.53 | 41.73 | 70.06 | -0.535 |
AcCAT7 | 302 | 35.33 | 6.09 | 44.08 | 73.61 | -0.542 |
AcCAT8 | 490 | 57.08 | 6.88 | 38.26 | 69.63 | -0.536 |
AcCAT9 | 91 | 10.34 | 5.90 | 37.97 | 63.19 | -0.676 |
Fig. 4 Distribution of AcCAT genes on the chromosomes of A. chinensis ①indicates chromosome gene density, ② indicates GC ratio, ③ indicates GC skew, and ④ indicates Nratio
miRNA | 靶基因Target | 期望值Expectation | 序列比对Alignment | 抑制方式Inhibition |
---|---|---|---|---|
ach-miR166k-3p | AcCAT5 | 2.0 | miRNA 21 UCCCUAACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166k-3p | AcCAT6 | 2.0 | miRNA 21 UCCCUAACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166a-3p | AcCAT6 | 3.0 | miRNA 21 CCCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166a-3p | AcCAT5 | 3.0 | miRNA 21 CCCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166b | AcCAT6 | 3.0 | miRNA 21 AUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166b | AcCAT5 | 3.0 | miRNA 21 AUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166g-3p | AcCAT5 | 3.0 | miRNA 21 CUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166g-3p | AcCAT6 | 3.0 | miRNA 21 CUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166m | AcCAT5 | 3.0 | miRNA 21 UCCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166m | AcCAT6 | 3.0 | miRNA 21 UCCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166n | AcCAT5 | 3.0 | miRNA 21 UUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166n | AcCAT6 | 3.0 | miRNA 21 UUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166a | AcCAT6 | 3.0 | miRNA 19 CCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1451 GGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166a | AcCAT5 | 3.0 | miRNA 19 CCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1340 GGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166h-3p | AcCAT5 | 3.0 | miRNA 20 CCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1339 UGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166h-3p | AcCAT6 | 3.0 | miRNA 20 CCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1450 UGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
Table 2 miRNAs targeting regulating AcCAT genes in A. chinensis
miRNA | 靶基因Target | 期望值Expectation | 序列比对Alignment | 抑制方式Inhibition |
---|---|---|---|---|
ach-miR166k-3p | AcCAT5 | 2.0 | miRNA 21 UCCCUAACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166k-3p | AcCAT6 | 2.0 | miRNA 21 UCCCUAACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166a-3p | AcCAT6 | 3.0 | miRNA 21 CCCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166a-3p | AcCAT5 | 3.0 | miRNA 21 CCCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166b | AcCAT6 | 3.0 | miRNA 21 AUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166b | AcCAT5 | 3.0 | miRNA 21 AUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166g-3p | AcCAT5 | 3.0 | miRNA 21 CUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166g-3p | AcCAT6 | 3.0 | miRNA 21 CUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166m | AcCAT5 | 3.0 | miRNA 21 UCCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166m | AcCAT6 | 3.0 | miRNA 21 UCCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166n | AcCAT5 | 3.0 | miRNA 21 UUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : :. : : Target 1338 AUGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166n | AcCAT6 | 3.0 | miRNA 21 UUCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : : :. : : Target 1449 AUGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166a | AcCAT6 | 3.0 | miRNA 19 CCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1451 GGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
ach-miR166a | AcCAT5 | 3.0 | miRNA 19 CCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1340 GGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166h-3p | AcCAT5 | 3.0 | miRNA 20 CCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1339 UGGAUUGAAGCCUUGUCUGA 1358 | 剪切 Cleavage |
ach-miR166h-3p | AcCAT6 | 3.0 | miRNA 20 CCCUUACUUCGGACCAGGCU 1 : : : : : : : : : : : : : :. : : Target 1450 UGGAUUGAAGCCUUGUCUGA 1469 | 剪切 Cleavage |
Fig. 8 Expression profile of AcCAT genes during the storage of kiwifruit CK indicates control check, Four_1W, Four_2W, Four_3W indicates kiwifruit stored in 4℃ for 1, 2 and 3 week, respectively. The same below
miRNA | AcCAT5 | AcCAT6 | ||||
---|---|---|---|---|---|---|
皮尔逊相关性Pearson correlation | 显著性Significance | 皮尔逊相关性Pearson correlation | 显著性Significance | |||
ach-miR166k-3p | -0.291 | 0.709 | -0.495 | 0.505 | ||
ach-miR166a-3p | -0.479 | 0.521 | -0.651 | 0.349 | ||
ach-miR166b | -0.990* | 0.010 | -0.976* | 0.024 | ||
ach-miR166g-3p | -0.996** | 0.004 | -0.975* | 0.025 | ||
ach-miR166m | -0.069 | 0.931 | -0.259 | 0.741 | ||
ach-miR166n | -0.991** | 0.009 | -0.978* | 0.022 | ||
ach-miR166a | -0.989* | 0.011 | -0.976* | 0.024 | ||
ach-miR166h-3p | -0.482 | 0.518 | -0.653 | 0.347 |
Table 3 Correlation analysis of AcCAT genes and miR166 family members in A. chinensis based on expression profile
miRNA | AcCAT5 | AcCAT6 | ||||
---|---|---|---|---|---|---|
皮尔逊相关性Pearson correlation | 显著性Significance | 皮尔逊相关性Pearson correlation | 显著性Significance | |||
ach-miR166k-3p | -0.291 | 0.709 | -0.495 | 0.505 | ||
ach-miR166a-3p | -0.479 | 0.521 | -0.651 | 0.349 | ||
ach-miR166b | -0.990* | 0.010 | -0.976* | 0.024 | ||
ach-miR166g-3p | -0.996** | 0.004 | -0.975* | 0.025 | ||
ach-miR166m | -0.069 | 0.931 | -0.259 | 0.741 | ||
ach-miR166n | -0.991** | 0.009 | -0.978* | 0.022 | ||
ach-miR166a | -0.989* | 0.011 | -0.976* | 0.024 | ||
ach-miR166h-3p | -0.482 | 0.518 | -0.653 | 0.347 |
[1] |
Nie Q, Gao GL, Fan QJ, et al. Isolation and characterization of a catalase gene “HuCAT3” from pitaya(Hylocereus undatus)and its expression under abiotic stress[J]. Gene, 2015, 563(1): 63-71.
doi: 10.1016/j.gene.2015.03.007 URL |
[2] |
Sofo A, Scopa A, Nuzzaci M, et al. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses[J]. Int J Mol Sci, 2015, 16(6): 13561-13578.
doi: 10.3390/ijms160613561 pmid: 26075872 |
[3] |
Chen HJ, Wu SD, Huang GJ, et al. Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation[J]. J Plant Physiol, 2012, 169(1): 86-97.
doi: 10.1016/j.jplph.2011.08.002 URL |
[4] |
Du YY, Wang PC, Chen J, et al. Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana[J]. J Integr Plant Biol, 2008, 50(10): 1318-1326.
doi: 10.1111/jipb.2008.50.issue-10 URL |
[5] |
Joo J, Lee YH, Song SI. Rice CatA, CatB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively[J]. J Plant Biol, 2014, 57(6): 375-382.
doi: 10.1007/s12374-014-0383-8 URL |
[6] |
Wang W, Cheng YY, Chen DD, et al. The catalase gene family in cotton: genome-wide characterization and bioinformatics analysis[J]. Cells, 2019, 8(2): 86.
doi: 10.3390/cells8020086 URL |
[7] |
Zhang Y, Zheng LJ, Yun L, et al. Catalase(CAT)gene family in wheat(Triticum aestivum L.): evolution, expression pattern and function analysis[J]. Int J Mol Sci, 2022, 23(1): 542.
doi: 10.3390/ijms23010542 URL |
[8] |
Raza A, Su W, Gao A, et al. Catalase(CAT)gene family in rapeseed(Brassica napus L.): genome-wide analysis, identification, and expression pattern in response to multiple hormones and abiotic stress conditions[J]. Int J Mol Sci, 2021, 22(8): 4281.
doi: 10.3390/ijms22084281 URL |
[9] |
Purev M, Kim YJ, Kim MK, et al. Isolation of a novel catalase(Cat1)gene from Panax ginseng and analysis of the response of this gene to various stresses[J]. Plant Physiol Biochem, 2010, 48(6): 451-460.
doi: 10.1016/j.plaphy.2010.02.005 URL |
[10] |
Li YF, Jiang WJ, Liu CH, et al. Comparison of fruit morphology and nutrition metabolism in different cultivars of kiwifruit across developmental stages[J]. PeerJ, 2021, 9: e11538.
doi: 10.7717/peerj.11538 URL |
[11] |
Liu YF, Qi YW, Chen X, et al. Phenolic compounds and antioxidant activity in red- and in green-fleshed kiwifruits[J]. Food Res Int, 2019, 116: 291-301.
doi: S0963-9969(18)30653-7 pmid: 30716948 |
[12] |
Pan LY, Zhao XY, Chen M, et al. Effect of exogenous methyl jasmonate treatment on disease resistance of postharvest kiwifruit[J]. Food Chem, 2020, 305: 125483.
doi: 10.1016/j.foodchem.2019.125483 URL |
[13] |
Xu FX, Liu SY, Liu YF, et al. Effectiveness of lysozyme coatings and 1-MCP treatments on storage and preservation of kiwifruit[J]. Food Chem, 2019, 288: 201-207.
doi: S0308-8146(19)30490-X pmid: 30902282 |
[14] |
千春录, 殷建东, 王利斌, 等. 1-甲基环丙烯和自发气调对猕猴桃品质及活性氧代谢的影响[J]. 食品科学, 2018, 39(11): 233-240.
doi: 10.7506/spkx1002-6630-201811037 |
Qian CL, Yin JD, Wang LB, et al. Effects of 1-methylcyclopropene treatment and self-developed modified atmosphere on quality and reactive oxygen species metabolism of kiwifruits during storage[J]. Food Sci, 2018, 39(11): 233-240. | |
[15] |
梁春强, 吕茳, 靳蜜静, 等. 草酸处理对采后猕猴桃冷害、抗氧化能力及能荷的影响[J]. 园艺学报, 2017, 44(2): 279-287.
doi: 10.16420/j.issn.0513-353x.2016-0451 |
Liang CQ, Lv J, Jin MJ, et al. Effects of oxalic acid treatment on chilling injury, antioxidant capacity and energy status in harvested kiwifruits under low temperature stress[J]. Acta Hortic Sin, 2017, 44(2): 279-287. | |
[16] |
张承, 李明, 龙友华, 等. 采前喷施壳聚糖复合膜对猕猴桃软腐病的防控及其保鲜作用[J]. 食品科学, 2016, 37(22): 274-281.
doi: 10.7506/spkx1002-6630-201622042 |
Zhang C, Li M, Long YH, et al. Control of soft rot in kiwifruit by pre-harvest application of chitosan composite coating and its effect on preserving and improving kiwifruit quality[J]. Food Sci, 2016, 37(22): 274-281.
doi: 10.1111/jfds.1972.37.issue-2 URL |
|
[17] | 沈勇根, 汪伟, 张伟, 等. 硫化氢提高低温贮藏下猕猴桃的抗氧化能力及果实品质(英文)[J]. 农业工程学报, 2015, 31(S1): 367-372. |
Shen YG, Wang W, Zhang W, et al. Hydrogen sulfide facilitating enhancement of antioxidant ability and maintainance of fruit quality of kiwifruits during low-temperature storage[J]. Trans Chin Soc Agric Eng, 2015, 31(S1): 367-372. | |
[18] |
Liang D, Shen YQ, Ni ZY, et al. Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids[J]. Front Plant Sci, 2018, 9: 426.
doi: 10.3389/fpls.2018.00426 pmid: 29675031 |
[19] |
Liang D, Gao F, Ni ZY, et al. Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione S-transferase transcription[J]. Molecules, 2018, 23(3): 584.
doi: 10.3390/molecules23030584 URL |
[20] |
Xia H, Ni ZY, Hu RP, et al. Melatonin alleviates drought stress by a non-enzymatic and enzymatic antioxidative system in kiwifruit seedlings[J]. Int J Mol Sci, 2020, 21(3): 852.
doi: 10.3390/ijms21030852 URL |
[21] | Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review[J]. Ann Bot, 2003, 91 Spec No(2): 179-194. |
[22] | Wei CL, Yang H, Wang SB, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proc Natl Acad Sci USA, 2018, 115(18): E4151-E4158. |
[23] |
Li XH, Liu GY, Geng YH, et al. A genome-wide analysis of the small auxin-up RNA(SAUR)gene family in cotton[J]. BMC Genomics, 2017, 18(1): 815.
doi: 10.1186/s12864-017-4224-2 URL |
[24] |
Song ZP, Pan FL, Lou XP, et al. Genome-wide identification and characterization of Hsp70 gene family in Nicotiana tabacum[J]. Mol Biol Rep, 2019, 46(2): 1941-1954.
doi: 10.1007/s11033-019-04644-7 |
[25] |
Xu XP, Chen XH, Shen X, et al. Genome-wide identification and characterization of DEAD-box helicase family associated with early somatic embryogenesis in Dimocarpus longan Lour[J]. J Plant Physiol, 2021, 258/259: 153364.
doi: 10.1016/j.jplph.2021.153364 URL |
[26] |
Xu K, Zhao Y, Zhao SH, et al. Genome-wide identification and low temperature responsive pattern of actin depolymerizing factor(ADF)gene family in wheat(Triticum aestivum L.)[J]. Front Plant Sci, 2021, 12: 618984.
doi: 10.3389/fpls.2021.618984 URL |
[27] |
Zhao W, Liu YH, Li L, et al. Genome-wide identification and characterization of bHLH transcription factors related to anthocyanin biosynthesis in red walnut(Juglans regia L.)[J]. Front Genet, 2021, 12: 632509.
doi: 10.3389/fgene.2021.632509 URL |
[28] |
Zhang ZS, Chen J, Liang CL, et al. Genome-wide identification and characterization of the bHLH transcription factor family in pepper(Capsicum annuum L.)[J]. Front Genet, 2020, 11: 570156.
doi: 10.3389/fgene.2020.570156 URL |
[29] |
Cheng CZ, Liu F, Sun XL, et al. Genome-wide identification of FAD gene family and their contributions to the temperature stresses and mutualistic and parasitic fungi colonization responses in banana[J]. Int J Biol Macromol, 2022, 204: 661-676.
doi: 10.1016/j.ijbiomac.2022.02.024 URL |
[30] |
李濯雪, 陈信波. 植物诱导型启动子及相关顺式作用元件研究进展[J]. 生物技术通报, 2015, 31(10): 8-15.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.006 |
Li ZX, Chen XB. Research advances on plant inducible promoters and related cis-acting elements[J]. Biotechnol Bull, 2015, 31(10): 8-15. | |
[31] |
Sun ZC, Shu LL, Zhang W, et al. Cca-miR398 increases copper sulfate stress sensitivity via the regulation of CSD mRNA transcription levels in transgenic Arabidopsis thaliana[J]. PeerJ, 2020, 8: e9105.
doi: 10.7717/peerj.9105 URL |
[32] |
Liu F, Huang N, Wang L, et al. A novel L-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane[J]. Front Plant Sci, 2018, 8: 2262.
doi: 10.3389/fpls.2017.02262 URL |
[33] |
Bela K, Horváth E, Gallé Á, et al. Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses[J]. J Plant Physiol, 2015, 176: 192-201.
doi: 10.1016/j.jplph.2014.12.014 URL |
[34] |
Begara-Morales JC, Sánchez-Calvo B, Chaki M, et al. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation[J]. J Exp Bot, 2015, 66(19): 5983-5996.
doi: 10.1093/jxb/erv306 pmid: 26116026 |
[35] |
Kitazumi A, Kawahara Y, Onda TS, et al. Implications of miR166 and miR159 induction to the basal response mechanisms of an Andigena potato(Solanum tuberosum subsp. andigena)to salinity stress, predicted from network models in Arabidopsis[J]. Genome, 2015, 58(1): 13-24.
doi: 10.1139/gen-2015-0011 pmid: 25955479 |
[36] |
Ding YF, Gong SH, Wang Y, et al. microRNA166 modulates cadmium tolerance and accumulation in rice[J]. Plant Physiol, 2018, 177(4): 1691-1703.
doi: 10.1104/pp.18.00485 pmid: 29925586 |
[37] |
Li N, Yang TX, Guo ZY, et al. Maize microRNA166 inactivation confers plant development and abiotic stress resistance[J]. Int J Mol Sci, 2020, 21(24): 9506.
doi: 10.3390/ijms21249506 URL |
[38] |
Ravichandran S, Ragupathy R, Edwards T, et al. microRNA-guided regulation of heat stress response in wheat[J]. BMC Genomics, 2019, 20(1): 488.
doi: 10.1186/s12864-019-5799-6 pmid: 31195958 |
[39] |
Li XY, Xie X, Li J, et al. Conservation and diversification of the miR166 family in soybean and potential roles of newly identified miR166s[J]. BMC Plant Biol, 2017, 17(1): 32.
doi: 10.1186/s12870-017-0983-9 pmid: 28143404 |
[40] |
Hamza NB, Sharma N, Tripathi A, et al. microRNA expression profiles in response to drought stress in Sorghum bicolor[J]. Gene Expr Patterns, 2016, 20(2): 88-98.
doi: 10.1016/j.gep.2016.01.001 URL |
[1] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[2] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[3] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[4] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[5] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[6] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[7] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[8] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[9] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[10] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[11] | MAO Ke-xin, WANG Hai-rong, AN Miao, LIU Teng-fei, WANG Shi-jin, LI Jian, LI Guo-tian. Identification of GRAS Gene Family and Expression Analysis Under Low Temperature Stress in Actinidia chinensis [J]. Biotechnology Bulletin, 2023, 39(11): 297-307. |
[12] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[13] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[14] | YUAN Xing, GUO Cai-hua, LIU Jin-ming, KANG Chao, QUAN Shao-wen, NIU Jian-xin. Genome-wide Identification of CONSTANS-Like Family Genes and Expression Analysis in Wanlut [J]. Biotechnology Bulletin, 2022, 38(9): 167-179. |
[15] | GUO Bin-hui, SONG Li. Transcription of Ethylene Biosynthesis and Signaling Associated Genes in Response to Heterodera glycine Infection [J]. Biotechnology Bulletin, 2022, 38(8): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||