Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (6): 126-132.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0860
Previous Articles Next Articles
LI Dian-dian1(), SU Yuan1, LI Jie2, XU Wen-tao1, ZHU Long-jiao1()
Received:
2022-07-11
Online:
2023-06-26
Published:
2023-07-07
Contact:
ZHU Long-jiao
E-mail:3219435892@qq.com;zhulongjiao@cau.edu.cn
LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers[J]. Biotechnology Bulletin, 2023, 39(6): 126-132.
常见致病菌 Common pathogenic bacterium | 菌型 Bacterial type | 靶标 Target | 适配体(类型) Aptamer(type) | 序列 Sequence(5'-3') | Kd/ (nmol·L-1) | 参考文献 Reference |
---|---|---|---|---|---|---|
沙门氏菌 Salmonellae | 鼠伤寒沙门氏菌 S. typhimurium | IVB型菌毛 Type IVB pili | S-PS8.4(RNA) | UCACUGUUAUCCGAUAGCAGCGCGGGAUGA | 8.56 | [ |
全细胞 Whole cells | ST-12, ST-33(DNA) | CTCCTCTGACTGTAACCACGGTGGTTTGATCACTATTGGGCCTTTGTGATGTCGGTAGT, CTCCTCTGACTGTAACCACGGTGGGAGAGATGCTATACAATCTTGTAAGGCGATGGACCG | 4.5±0.4, 51.0±4.3 | [ | ||
肠炎沙门氏菌 S. enteritidis | SipA蛋白 SipA protein | Apt17(DNA) | TAGGGAAGAGAAGGACATATGATGCAATGGAACCGCTGAACGACCCTAG CATTATCAGTGTGGTTGACTAGTACATGACCACTTGA | 114.9(27℃), 63.4(37℃) | [ | |
猪霍乱沙门氏菌 S. choleraesuis | 鞭毛蛋白 Flagellin | Aptamer 3(DNA) | GGCAGGACAACAGCGTGTAGTATCAGCTTACGGTG | 41.0±2.0 | [ | |
结核分枝杆菌 Mycobacterium tuberculosis | H37Rv | PPK2 | G9(DNA) | AACACATAGGTTTGGTTAGGTTGGTTGGTTGAATTA | 870±220 | [ |
全细胞 Whole cells | MS10-Trunc(DNA) | GGTGTGTTGACTGAGGGGGTGGGGTGGGTGGTGGTGGATATAGC | 0.019 | [ | ||
铜绿假单胞菌 Pseudomonas aeruginosa | C4-HSL | A16(DNA) | CCATCCACACTCCGCAAGTGGGGAGGGGAGAGACGACGATCCTGTGGGT TTTCTGCAGTGAGTCGTGTTTTCGACTTATTGCGTCGGCTGCCTCTACAT | 28.47 | [ | |
金黄色葡萄球菌 Staphylococcus aureus | 肠毒素A Enterotoxin A | S3(DNA) | CCCGCCTCTGAGCATTATTAATGTTATACCTTACGGCTGG | 36.93±7.29 | [ |
Table 1 Antibacterial aptamers screened by SELEX technique
常见致病菌 Common pathogenic bacterium | 菌型 Bacterial type | 靶标 Target | 适配体(类型) Aptamer(type) | 序列 Sequence(5'-3') | Kd/ (nmol·L-1) | 参考文献 Reference |
---|---|---|---|---|---|---|
沙门氏菌 Salmonellae | 鼠伤寒沙门氏菌 S. typhimurium | IVB型菌毛 Type IVB pili | S-PS8.4(RNA) | UCACUGUUAUCCGAUAGCAGCGCGGGAUGA | 8.56 | [ |
全细胞 Whole cells | ST-12, ST-33(DNA) | CTCCTCTGACTGTAACCACGGTGGTTTGATCACTATTGGGCCTTTGTGATGTCGGTAGT, CTCCTCTGACTGTAACCACGGTGGGAGAGATGCTATACAATCTTGTAAGGCGATGGACCG | 4.5±0.4, 51.0±4.3 | [ | ||
肠炎沙门氏菌 S. enteritidis | SipA蛋白 SipA protein | Apt17(DNA) | TAGGGAAGAGAAGGACATATGATGCAATGGAACCGCTGAACGACCCTAG CATTATCAGTGTGGTTGACTAGTACATGACCACTTGA | 114.9(27℃), 63.4(37℃) | [ | |
猪霍乱沙门氏菌 S. choleraesuis | 鞭毛蛋白 Flagellin | Aptamer 3(DNA) | GGCAGGACAACAGCGTGTAGTATCAGCTTACGGTG | 41.0±2.0 | [ | |
结核分枝杆菌 Mycobacterium tuberculosis | H37Rv | PPK2 | G9(DNA) | AACACATAGGTTTGGTTAGGTTGGTTGGTTGAATTA | 870±220 | [ |
全细胞 Whole cells | MS10-Trunc(DNA) | GGTGTGTTGACTGAGGGGGTGGGGTGGGTGGTGGTGGATATAGC | 0.019 | [ | ||
铜绿假单胞菌 Pseudomonas aeruginosa | C4-HSL | A16(DNA) | CCATCCACACTCCGCAAGTGGGGAGGGGAGAGACGACGATCCTGTGGGT TTTCTGCAGTGAGTCGTGTTTTCGACTTATTGCGTCGGCTGCCTCTACAT | 28.47 | [ | |
金黄色葡萄球菌 Staphylococcus aureus | 肠毒素A Enterotoxin A | S3(DNA) | CCCGCCTCTGAGCATTATTAATGTTATACCTTACGGCTGG | 36.93±7.29 | [ |
[1] |
Soares NC, Bou G, Blackburn JM. Editorial: proteomics of microbial human pathogens[J]. Front Microbiol, 2016, 7: 1742.
pmid: 27867374 |
[2] |
Garber B, Glauser J. Recent developments in infectious disease chemotherapy: review for emergency department practitioners 2020[J]. Curr Emerg Hosp Med Rep, 2020, 8(3): 116-121.
doi: 10.1007/s40138-020-00218-1 |
[3] |
Moldoveanu AL, Rycroft JA, Helaine S. Impact of bacterial persisters on their host[J]. Curr Opin Microbiol, 2021, 59: 65-71.
doi: 10.1016/j.mib.2020.07.006 pmid: 32866708 |
[4] | Kumar A, Ellermann M, Sperandio V. Taming the beast: interplay between gut small molecules and enteric pathogens[J]. Infect Immun, 2019, 87(9): e00131-e00119. |
[5] |
Buroni S, Chiarelli LR. Antivirulence compounds: a future direction to overcome antibiotic resistance?[J]. Future Microbiol, 2020, 15: 299-301.
doi: 10.2217/fmb-2019-0294 pmid: 32286100 |
[6] | Zhao YW, Wang HX, Jia GC, et al. Application of aptamer-based biosensor for rapid detection of pathogenic Escherichia coli[J]. Sensors(Basel), 2018, 18(8): 2518. |
[7] |
Pan Q, Zhang XL, Wu HY, et al. Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi[J]. Antimicrob Agents Chemother, 2005, 49(10): 4052-4060.
doi: 10.1128/AAC.49.10.4052-4060.2005 URL |
[8] |
Kolovskaya OS, Savitskaya AG, Zamay TN, et al. Development of bacteriostatic DNA aptamers for salmonella[J]. J Med Chem, 2013, 56(4): 1564-1572.
doi: 10.1021/jm301856j pmid: 23387511 |
[9] |
Shatila F, Yalçın HT, Özyurt C, et al. Single-stranded DNA(ssDNA)Aptamer targeting SipA protein inhibits Salmonella Enteritidis invasion of intestinal epithelial cells[J]. Int J Biol Macromol, 2020, 148: 518-524.
doi: S0141-8130(19)38677-5 pmid: 31953175 |
[10] | Ning Y, Cheng LJ, Ling M, et al. Efficient suppression of biofilm formation by a nucleic acid aptamer[J]. Pathog Dis, 2015, 73(6): ftv034. |
[11] |
Shum KT, Lui ELH, Wong SCK, et al. Aptamer-mediated inhibition of Mycobacterium tuberculosis polyphosphate kinase 2[J]. Biochemistry, 2011, 50(15): 3261-3271.
doi: 10.1021/bi2001455 pmid: 21381755 |
[12] |
Dhiman A, Kumar C, Mishra SK, et al. Theranostic application of a novel G-quadruplex-forming DNA aptamer targeting malate synthase of Mycobacterium tuberculosis[J]. Mol Ther Nucleic Acids, 2019, 18: 661-672.
doi: 10.1016/j.omtn.2019.09.026 URL |
[13] |
Zhao M, Li WB, Liu KC, et al. C4-HSL aptamers for blocking qurom sensing and inhibiting biofilm formation in Pseudomonas aeruginosa and its structure prediction and analysis[J]. PLoS One, 2019, 14(2): e0212041.
doi: 10.1371/journal.pone.0212041 URL |
[14] |
Wang KY, Wu D, Chen Z, et al. Inhibition of the superantigenic activities of Staphylococcal enterotoxin A by an aptamer antagonist[J]. Toxicon, 2016, 119: 21-27.
doi: 10.1016/j.toxicon.2016.05.006 pmid: 27179422 |
[15] |
Takahashi M. Aptamers targeting cell surface proteins[J]. Biochimie, 2018, 145: 63-72.
doi: S0300-9084(17)30328-0 pmid: 29198584 |
[16] |
Duan N, Wu SJ, Chen XJ, et al. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus[J]. J Agric Food Chem, 2012, 60(16): 4034-4038.
doi: 10.1021/jf300395z URL |
[17] | Zon G. Mini-review: recent advances in aptamer applications[J]. J Cancer Treatment Diagn, 2020, 5(3): 1-5. |
[18] |
Sun YH, Duan N, Ma PF, et al. Colorimetric aptasensor based on truncated aptamer and trivalent DNAzyme for Vibrio parahemolyticus determination[J]. J Agric Food Chem, 2019, 67(8): 2313-2320.
doi: 10.1021/acs.jafc.8b06893 URL |
[19] |
Li JY, Tang M, Xue YY. Review of the effects of silver nanoparticle exposure on gut bacteria[J]. J Appl Toxicol, 2019, 39(1): 27-37.
doi: 10.1002/jat.3729 pmid: 30247756 |
[20] |
Baig IA, Moon JY, Lee SC, et al. Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase[J]. Biochim Biophys Acta Proteins Proteom, 2015, 1854(10): 1338-1350.
doi: 10.1016/j.bbapap.2015.05.003 URL |
[21] |
Kim SK, Sims CL, Wozniak SE, et al. Antibiotic resistance in bacteria: novel metalloenzyme inhibitors[J]. Chem Biol Drug Des, 2009, 74(4): 343-348.
doi: 10.1111/jpp.2009.74.issue-4 URL |
[22] |
de la Fuente-Núñez C, Reffuveille F, Haney EF, et al. Broad-spectrum anti-biofilm peptide that targets a cellular stress response[J]. PLoS Pathog, 2014, 10(5): e1004152.
doi: 10.1371/journal.ppat.1004152 URL |
[23] |
Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, et al. Why chronic wounds will not heal: a novel hypothesis[J]. Wound Repair Regen, 2008, 16(1): 2-10.
doi: 10.1111/j.1524-475X.2007.00283.x pmid: 18211573 |
[24] |
Thormann KM, Saville RM, Shukla S, et al. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms[J]. J Bacteriol, 2005, 187(3): 1014-1021.
pmid: 15659679 |
[25] |
Wang KY, Gan LJ, Jiang L, et al. Neutralization of staphylococcal enterotoxin B by an aptamer antagonist[J]. Antimicrob Agents Chemother, 2015, 59(4): 2072-2077.
doi: 10.1128/AAC.04414-14 pmid: 25624325 |
[26] |
Du YL, Wang XY, Han ZL, et al. Polyphosphate kinase 1 is a pathogenesis determinant in enterohemorrhagic Escherichia coli O157: H7[J]. Front Microbiol, 2021, 12: 762171.
doi: 10.3389/fmicb.2021.762171 URL |
[27] |
Rao NN, Gómez-García MR, Kornberg A. Inorganic polyphosphate: essential for growth and survival[J]. Annu Rev Biochem, 2009, 78: 605-647.
doi: 10.1146/annurev.biochem.77.083007.093039 pmid: 19344251 |
[28] |
Choi WI, Sahu A, Kim YH, et al. Photothermal cancer therapy and imaging based on gold nanorods[J]. Ann Biomed Eng, 2012, 40(2): 534-546.
doi: 10.1007/s10439-011-0388-0 pmid: 21887589 |
[29] |
Feng YH, Liu L, Zhang J, et al. Photoactive antimicrobial nanomaterials[J]. J Mater Chem B, 2017, 5(44): 8631-8652.
doi: 10.1039/c7tb01860f pmid: 32264259 |
[30] | 谢其鹏. 中空介孔二氧化硅纳米材料在抑菌和检测中的应用[D]. 无锡: 江南大学, 2021. |
Xie Q P. Application of hollow mesoporous silica nanomaterials in bacteriostatic and detection[D]. Wuxi: Jiangnan University, 2021. | |
[31] | 余梦群. 抗生素功能化金纳米材料用于铁离子和致病菌检测以及抗菌作用研究[D]. 重庆: 西南大学, 2017. |
Yu MQ. Application of antibiotic functionalized gold nanomaterials in detection of iron ions and pathogenic bacteria and study on antibacterial activity[D]. Chongqing: Southwest University, 2017. | |
[32] |
Yang M, Chen X, Zhu LJ, et al. Aptamer-functionalized DNA-silver nanocluster nanofilm for visual detection and elimination of bacteria[J]. ACS Appl Mater Interfaces, 2021, 13(32): 38647-38655.
doi: 10.1021/acsami.1c05751 URL |
[33] |
Akasaka T, Matsuoka M, Hashimoto T, et al. The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans[J]. Mater Sci Eng B, 2010, 173(1/2/3): 187-190.
doi: 10.1016/j.mseb.2010.01.001 URL |
[34] |
Levi-Polyachenko N, Young C, MacNeill C, et al. Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes[J]. Int J Hyperth, 2014, 30(7): 490-501.
doi: 10.3109/02656736.2014.966790 URL |
[35] |
Wang S, Mao BY, Wu MX, et al. Influence of aptamer-targeted antibiofilm agents for treatment of Pseudomonas aeruginosa biofilms[J]. Antonie Van Leeuwenhoek, 2018, 111(2): 199-208.
doi: 10.1007/s10482-017-0941-4 URL |
[36] | 毛必瑶. 基于适配体靶向传递技术的菌膜控制方法研究[D]. 长沙: 湖南师范大学, 2017. |
Mao BY. Study on bacterial membrane control method based on aptamer targeted delivery technology[D]. Chagnsha: Hunan Normal University, 2017. | |
[37] |
Perez F, Endimiani A, Hujer KM, et al. The continuing challenge of ESBLs[J]. Curr Opin Pharmacol, 2007, 7(5): 459-469.
doi: 10.1016/j.coph.2007.08.003 pmid: 17875405 |
[38] |
Schlesinger S, Lahousse M, Foster T, et al. Metallo-β-lactamases and aptamer-based inhibition[J]. Pharmaceuticals, 2011, 4(2): 419-428.
doi: 10.3390/ph4020419 URL |
[1] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[2] | SUN Ping-yong, ZHANG Wu-han, SHU Fu, HE Qiang, ZHANG Li, PENG Zhi-rong, DENG Hua-feng. Analysis of Mutation Sites of OsBADH2 Gene in Fragrant Rice and Development of Related Functional Marker [J]. Biotechnology Bulletin, 2021, 37(4): 1-7. |
[3] | FAN Lei, DAI Dong-yang, XIONG An-ping, SHENG Yun-yan, YU Ming-zhu, QIN Ying-cong. Molecular Marker-assisted Selection in Melon Sex Expression [J]. Biotechnology Bulletin, 2019, 35(4): 195-200. |
[4] | SHI Lin1, 2, HU Yan-ping1, WANG Jian-ke1, 2, WANG Jun1, 2, XU Xiao-ning3, LI Yi1, WANG Li1. Optimization of ISSR-PCR Reaction System on Ranunculus nephelogenes var. nephelogenes and Primer Selection [J]. Biotechnology Bulletin, 2016, 32(9): 65-71. |
[5] | GUO Yuan. Current Progress on Ribosome Display [J]. Biotechnology Bulletin, 2016, 32(8): 22-27. |
[6] | CAI Zhi-jun, LI Jin-jun, ZHOU De-yin, FU Hao-wei. Improving the Percentage of Exerted Stigma in CMS Lines of Japonica Hybrid Rice by Molecular Marker-assisted Selection [J]. Biotechnology Bulletin, 2016, 32(3): 52-57. |
[7] | Dong Bin, Li Rongxi, Huang Yongfang, Hong Wenhong, Tan Sha,. Application of Molecular Markers in Studies of Camellia oleifera [J]. Biotechnology Bulletin, 2015, 31(6): 74-80. |
[8] | Huang Daming, Li Qian, Guan Guoqiang, Zhang Zhicai, Qian Jingya, Song Qingchun. Selection,Identification and Medium Optimization of a Phosphate-solubilizing Bacterium [J]. Biotechnology Bulletin, 2015, 31(2): 173-178. |
[9] | Liu Jianfeng, Wang Yanli,Li Xianggan. Mannose Selection System and Its Commercial Application in Transgenic Corn [J]. Biotechnology Bulletin, 2014, 0(9): 13-21. |
[10] | Ge Chunhui, Meng Ajing, Ma Yanru, Yang Xinhua, Wang Xinyong, Sun Jiusheng. Selection, Identification and Characteristics of a Cucumber Growth-Promotion Strain of Rhizobacteria [J]. Biotechnology Bulletin, 2014, 0(3): 94-99. |
[11] | Liu Jinhua, Wang Ting, Gao Qikang. Influence of Piriformospora indica on Host Plant Selection by Aphid Lipaphis erysimi(Kaltenbach) [J]. Biotechnology Bulletin, 2014, 0(12): 133-140. |
[12] | Shi Yang,Dong Huina,Zhang Dawei. Application Progress of mazF Gene in Genetic Modification System [J]. Biotechnology Bulletin, 2014, 0(11): 48-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||