Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (6): 274-285.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1226
Previous Articles Next Articles
XU Hong-Yun1(), LV Jun2, YU Cun2()
Received:
2022-10-08
Online:
2023-06-26
Published:
2023-07-07
Contact:
YU Cun
E-mail:xhyplant@126.com;chifengyucun@163.com
XU Hong-Yun, LV Jun, YU Cun. Growth Promoting of Pinus massoniana Seedlings Regulated by Rhizosphere Phosphate-solubilizing Paraburkholderia spp.[J]. Biotechnology Bulletin, 2023, 39(6): 274-285.
Fig. 4 P solubilizing capacity of three PSB in four different phosphate medium and acidification of medium during the phosphate solubilization A and B: Strain WJ10; C and D: strain WJ25; E and F: strain WJ41. The data in the figure are means, and the error line is the SE. The same blow
Fig. 6 Effects of PSB strain inoculations on the growth, nutrient uptake and physiological indexes of P. massoniana seedlings A: Seedling height; B: root length; C: lateral root number; D: fresh weight; E: dry weight; F: soluble protein content; G: root activity; H: chlorophyll content; I: plant nutrient. Different letters indicate siginificant difference(P<0.05). The same below
Fig. 7 Effects of PSB strains on soil nutrient A: Available nutrient content of soil. B: Total nutrient content of soil. C: Soil urease. D: Soil catalase. E: Soil phosphatase
Treatment | OTUs | Shannon | ACE | Chao1 | Simpson |
---|---|---|---|---|---|
CK | 2181±100.00ab | 5.67±0.07b | 3126.18±107.24a | 2968.00±175.58a | 0.0134±0.002a |
WJ10 | 1967±75.48bc | 5.82±0.14ab | 2713.49±60.82b | 2636.03±78.64b | 0.0090±0.001a |
WJ25 | 2244±179.85a | 5.86±0.18a | 3109.78±98.45a | 2960.25±57.96a | 0.0116±0.002a |
WJ41 | 1877±73.75c | 5.66±0.17b | 2604.44±45.00b | 2474.54±47.17b | 0.0121±0.002a |
Table 1 Alpha diversity index of bacteria in rhizosphere soil of P. massoniana with different treatments
Treatment | OTUs | Shannon | ACE | Chao1 | Simpson |
---|---|---|---|---|---|
CK | 2181±100.00ab | 5.67±0.07b | 3126.18±107.24a | 2968.00±175.58a | 0.0134±0.002a |
WJ10 | 1967±75.48bc | 5.82±0.14ab | 2713.49±60.82b | 2636.03±78.64b | 0.0090±0.001a |
WJ25 | 2244±179.85a | 5.86±0.18a | 3109.78±98.45a | 2960.25±57.96a | 0.0116±0.002a |
WJ41 | 1877±73.75c | 5.66±0.17b | 2604.44±45.00b | 2474.54±47.17b | 0.0121±0.002a |
Fig. 8 Relative abundance of bacteria at phyla levels and genus levels in the rhizosphere soils under different treatments A: Phyla levels; B: genus levels
α多样性指数 Alpha diversity index | 水解N Available N | 有效P Available P | 速效K Available K | 尿素酶 Urease | 过氧化氢酶 Catalase | 磷酸酶 Phosphatase |
---|---|---|---|---|---|---|
Shannon | 0.883 | 0.250 | 0.426 | 0.548 | 0.903 | 0.426 |
ACE | -0.139 | -0.884 | -0.441 | -0.519 | -0.157 | -0.512 |
Chao1 | -0.091 | -0.850 | -0.452 | -0.504 | -0.191 | -0.516 |
Simpson | -0.689 | -0.773 | -0.378 | -0.605 | -0.464 | -0.449 |
Table 2 Correlation between the rhizosphere soil available nutrients, enzyme activity and bacterial alpha diversity index of P. massoniana
α多样性指数 Alpha diversity index | 水解N Available N | 有效P Available P | 速效K Available K | 尿素酶 Urease | 过氧化氢酶 Catalase | 磷酸酶 Phosphatase |
---|---|---|---|---|---|---|
Shannon | 0.883 | 0.250 | 0.426 | 0.548 | 0.903 | 0.426 |
ACE | -0.139 | -0.884 | -0.441 | -0.519 | -0.157 | -0.512 |
Chao1 | -0.091 | -0.850 | -0.452 | -0.504 | -0.191 | -0.516 |
Simpson | -0.689 | -0.773 | -0.378 | -0.605 | -0.464 | -0.449 |
[1] |
Kshetri L, Pandey P, Sharma GD. Rhizosphere mediated nutrient management in Allium hookeri Thwaites by using phosphate solubilizing rhizobacteria and tricalcium phosphate amended soil[J]. J Plant Interact, 2018, 13(1): 256-269.
doi: 10.1080/17429145.2018.1472307 URL |
[2] |
Vance CP. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources[J]. Plant Physiol, 2001, 127(2): 390-397.
pmid: 11598215 |
[3] |
Yu X, Liu X, Zhu TH, et al. Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization[J]. Biol Fertil Soils, 2011, 47(4): 437-446.
doi: 10.1007/s00374-011-0548-2 URL |
[4] |
Yang PX, Ma L, Chen MH, et al. Phosphate solubilizing ability and phylogenetic diversity of bacteria from P-rich soils around Dianchi Lake drainage area of China[J]. Pedosphere, 2012, 22(5): 707-716.
doi: 10.1016/S1002-0160(12)60056-3 URL |
[5] |
Zeng QW, Wu XQ, Wen XY. Identification and characterization of the rhizosphere phosphate-solubilizing bacterium Pseudomonas frederiksbergensis JW-SD2, and its plant growth-promoting effects on poplar seedlings[J]. Ann Microbiol, 2016, 66(4): 1343-1354.
doi: 10.1007/s13213-016-1220-8 URL |
[6] |
Singh JS, Pandey VC, Singh DP. et al. Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development[J]. Agric Ecosyst Environ, 2011, 140(3/4): 339-353.
doi: 10.1016/j.agee.2011.01.017 URL |
[7] |
Wang YY, Li PS, Zhang BX, et al. Identification of phosphate-solubilizing microorganisms and determination of their phosphate-solubilizing activity and growth-promoting capability[J]. BioResources, 2020, 15(2): 2560-2578.
doi: 10.15376/biores URL |
[8] |
Li YB, Liu XM, Hao TY, et al. Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates[J]. Int J Mol Sci, 2017, 18(7): 1253.
doi: 10.3390/ijms18071253 URL |
[9] |
Azeem M, Hassan TU, Tahir MI, et al. Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity[J]. Appl Soil Ecol, 2021, 157: 103732.
doi: 10.1016/j.apsoil.2020.103732 URL |
[10] |
Chauhan H, Bagyaraj DJ, Selvakumar G, et al. Novel plant growth promoting rhizobacteria—Prospects and potential[J]. Appl Soil Ecol, 2015, 95: 38-53.
doi: 10.1016/j.apsoil.2015.05.011 URL |
[11] |
Liu FP, Liu HQ, Zhou HL, et al. Isolation and characterization of phosphate-solubilizing bacteria from betel nut(Areca catechu)and their effects on plant growth and phosphorus mobilization in tropical soils[J]. Biol Fertil Soils, 2014, 50(6): 927-937.
doi: 10.1007/s00374-014-0913-z URL |
[12] |
Yu LM, Zhao MM, Wang JS, et al. Antioxidant, immunomodulatory and anti-breast cancer activities of phenolic extract from pine(Pinus massoniana Lamb)bark[J]. Innov Food Sci Emerg Technol, 2008, 9(1): 122-128.
doi: 10.1016/j.ifset.2007.06.006 URL |
[13] |
Liu QH, Zhou ZC, Wei YC, et al. Genome-wide identification of differentially expressed genes associated with the high yielding of oleoresin in secondary xylem of Masson pine(Pinus massoniana lamb)by transcriptomic analysis[J]. PLoS One, 2015, 10(7): e0132624.
doi: 10.1371/journal.pone.0132624 URL |
[14] | 李玲, 周运超, 刘娟, 等. 施肥对马尾松土壤磷形态的影响[J]. 亚热带水土保持, 2011, 23(4): 14-17, 57. |
Li L, Zhou YC, Liu J, et al. Effect on soil phosphorus change of Masson pineafter fertilizer treatments[J]. Subtrop Soil Water Conserv, 2011, 23(4): 14-17, 57. | |
[15] | 王艺, 丁贵杰. 外生菌根对马尾松幼苗生长、生理特征和养分的影响[J]. 南京林业大学学报: 自然科学版, 2013, 37(2): 97-102. |
Wang Y, Ding GJ. Effects of ectomycorrhizal on growth, physiological characteristics and nutrition in Pinus massoniana seedlings[J]. J Nanjing For Univ Nat Sci Ed, 2013, 37(2): 97-102. | |
[16] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Common bacterial system identification manual[M]. Beijing: Science Press, 2001. | |
[17] | Shen P, Chen XD. Microbiology experiment[M]. Higher Education, Beijing, 2007. |
[18] |
Heredia-Acuña C, Almaraz-Suarez JJ, Arteaga-Garibay R, et al. Isolation, characterization and effect of plant-growth-promoting rhizobacteria on pine seedlings(Pinus pseudostrobus Lindl.)[J]. J For Res, 2019, 30(5): 1727-1734.
doi: 10.1007/s11676-018-0723-5 |
[19] |
Yin D, Deng X, Chet I, et al. Physiological responses of Pinus sylvestris var. mongolica seedlings to the interaction between Suillus luteus and Trichoderma virens[J]. Curr Microbiol, 2014, 69(3): 334-342.
doi: 10.1007/s00284-014-0589-5 pmid: 24801335 |
[20] |
Zhang ZJ, Huang RF. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling[J]. Bio-Protocol, 2013, 3(14). DOI: 10.21769/BioProtoc.817.
doi: 10.21769/BioProtoc.817 |
[21] |
Chu EP, Tavares AR, Kanashiro S, et al. Effects of auxins on soluble carbohydrates, starch and soluble protein content in Aechmea blanchetiana(Bromeliaceae)cultured in vitro[J]. Sci Hortic, 2010, 125(3): 451-455.
doi: 10.1016/j.scienta.2010.04.021 URL |
[22] |
Wolf B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status[J]. Commun Soil Sci Plant Anal, 1982, 13(12): 1035-1059.
doi: 10.1080/00103628209367332 URL |
[23] |
Javeed HMR, Qamar R, Rehman AU, et al. Improvement in soil characteristics of sandy loam soil and grain quality of spring maize by using phosphorus solublizing bacteria[J]. Sustainability, 2019, 11(24): 7049.
doi: 10.3390/su11247049 URL |
[24] |
Lemanowicz J, Haddad SA, Bartkowiak A, et al. The role of an urban park's tree stand in shaping the enzymatic activity, glomalin content and physicochemical properties of soil[J]. Sci Total Environ, 2020, 741: 140446.
doi: 10.1016/j.scitotenv.2020.140446 URL |
[25] |
Tuomisto H. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity[J]. Ecography, 2010, 33(1): 2-22.
doi: 10.1111/eco.2010.33.issue-1 URL |
[26] |
Sarkar A, Islam T, Biswas GC, et al. Screening for phosphate solubilizing bacteria inhabiting the rhizoplane of rice grown in acidic soil in Bangladesh[J]. Acta Microbiol Immunol Hung, 2012, 59(2): 199-213.
doi: 10.1556/amicr.59.2012.2.5 URL |
[27] |
Melo J, Carvalho L, Correia P, et al. Conventional farming disrupts cooperation among phosphate solubilising bacteria isolated from Carica papaya's rhizosphere[J]. Appl Soil Ecol, 2018, 124: 284-288.
doi: 10.1016/j.apsoil.2017.11.015 URL |
[28] |
Panhwar QA, Naher UA, Shamshuddin J, et al. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth[J]. PLoS One, 2014, 9(10): e97241.
doi: 10.1371/journal.pone.0097241 URL |
[29] |
Collavino MM, Sansberro PA, Mroginski LA, et al. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth[J]. Biol Fertil Soils, 2010, 46(7): 727-738.
doi: 10.1007/s00374-010-0480-x URL |
[30] | Jog R, Pandya M, Nareshkumar G, et al. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth[J]. Microbiology(Reading), 2014, 160(Pt 4): 778-788. |
[31] |
Burns RG, DeForest JL, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biol Biochem, 2013, 58: 216-234.
doi: 10.1016/j.soilbio.2012.11.009 URL |
[32] |
Wu FY, Wan JHC, Wu SC, et al. Effects of earthworms and plant growth-promoting rhizobacteria(PGPR)on availability of nitrogen, phosphorus, and potassium in soil[J]. Z Pflanzenernähr Bodenk, 2012, 175(3): 423-433.
doi: 10.1002/jpln.v175.3 URL |
[33] |
Heidari E, Mohammadi K, Pasari B, et al. Combining the phosphate solubilizing microorganisms with biochar types in order to improve safflower yield and soil enzyme activity[J]. Soil Sci Plant Nutr, 2020, 66(2): 255-267.
doi: 10.1080/00380768.2019.1704180 |
[34] |
Kielak AM, Cipriano MAP, Kuramae EE. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria[J]. Arch Microbiol, 2016, 198(10): 987-993.
pmid: 27339258 |
[35] |
Buddrus-Schiemann K, Schmid M, Schreiner K, et al. Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley[J]. Microb Ecol, 2010, 60(2): 381-393.
doi: 10.1007/s00248-010-9720-8 pmid: 20644925 |
[36] |
Yang WL, Gong T, Wang JW, et al. Effects of compound microbial fertilizer on soil characteristics and yield of wheat(Triticum aestivum L.)[J]. J Soil Sci Plant Nutr, 2020, 20(4): 2740-2748.
doi: 10.1007/s42729-020-00340-9 |
[37] |
de Feudis M, Cardelli V, Massaccesi L, et al. Altitude affects the quality of the water-extractable organic matter(WEOM)from rhizosphere and bulk soil in European beech forests[J]. Geoderma, 2017, 302: 6-13.
doi: 10.1016/j.geoderma.2017.04.015 URL |
[38] |
Ramos B, Garcı́a JAL, Probanza A, et al. Alterations in the rhizobacterial community associated with European alder growth when inoculated with PGPR strain Bacillus licheniformis[J]. Environ Exp Bot, 2003, 49(1): 61-68.
doi: 10.1016/S0098-8472(02)00059-X URL |
[39] |
Probanza A, Lucas Garcı́a JA, Ruiz Palomino M, et al. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus(B. licheniformis CECT 5106 and B. Pumilus CECT 5105)[J]. Appl Soil Ecol, 2002, 20(2): 75-84.
doi: 10.1016/S0929-1393(02)00007-0 URL |
[1] | ZHAO Guang-xu, YANG He-tong, SHAO Xiao-bo, CUI Zhi-hao, LIU Hong-guang, ZHANG Jie. Phosphate-solubilizing Properties and Optimization of Cultivation Conditions of Penicillium rubens: A Highly Efficient Phosphate Solubilizer [J]. Biotechnology Bulletin, 2023, 39(9): 71-83. |
[2] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[3] | YANG Dong-ya, QI Rui-xue LI, Zhao-xuan , LIN Wei, MA Hui, ZHANG Xue-yan. Screening, Identification and Growth-promoting Effect of Antagonistic Bacillus spp. Against Cucumber Fusarium solani [J]. Biotechnology Bulletin, 2023, 39(2): 211-220. |
[4] | ZOU Lan, WANG Qian, LI Mu-yi, YE Kun-hao, HUANG Jing. Identification, Biocontrol and Plant Growth-promoting Potential of Endophytic Bacterial Strain JY-3-1R from Aconitum carmichaelii Debx. [J]. Biotechnology Bulletin, 2023, 39(10): 246-255. |
[5] | SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata [J]. Biotechnology Bulletin, 2023, 39(1): 264-273. |
[6] | WANG Shuai, LV Hong-rui, ZHANG Hao, WU Zhan-wen, XIAO Cui-hong, SUN Dong-mei. Whole-Genome Sequencing Identification of Phosphate-solubilizing Bacteria PSB-R and Analysis of Its Phosphate-solubilizing Properties [J]. Biotechnology Bulletin, 2023, 39(1): 274-283. |
[7] | HE Li-na, FENG Yuan, SHI Hui-min, YE Jian-ren. Screening and Identification of Endophytic Bacteria with Nematicidal Activity Against Bursaphelenchus xylophilus in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(8): 159-166. |
[8] | SHEN Jia-jia, HOU Xiao-gai, WANG Er-qiang, WANG Fei, GUO Li-li. Organic Phosphate-solubilizing Bacteria Screening in the Rhizosphere of Paeonia ostii and Study on Their Phosphate-solubilizing Capabilities [J]. Biotechnology Bulletin, 2022, 38(6): 157-165. |
[9] | HAO Qing-qing, YAO Sheng, LIU Jia-he, CHEN Pei-zhen, ZHANG Meng-yang, JI Kong-shu. Cloning and Expression Analysis of NAC Transcription Factor PmNAC8 in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(4): 202-216. |
[10] | HU Shan, LIANG Wei-qu, HUANG Hao, XU Cong, LUO Hua-jian, HU Chu-wei, HUANG Xiao-yan, CHEN Shi-li. Screening,Identification and Antagonism of Phosphate-Solubilizing Bacteria from the Compost Chinese Medicinal Herbal Residues [J]. Biotechnology Bulletin, 2022, 38(3): 92-102. |
[11] | FANG Dan-dan, ZHANG Ting, WEN Xiao-peng. Overexpression of Pinus massoniana PmPT3 Gene in Arabidopsis thaliana Increasing Low Phosphorus Tolerance [J]. Biotechnology Bulletin, 2021, 37(10): 1-8. |
[12] | HU Yu-jie, ZHU Xiu-ling, DING Yan-qin, DU Bing-hai, WANG Cheng-qiang. Research Progress on Salt Tolerance and Growth-promoting Mechanism of Bacillus [J]. Biotechnology Bulletin, 2020, 36(9): 64-74. |
[13] | PAN Jing, HUANG Cui-hua, PENG Fei, YOU Quan-gang, LIU Fei-yao, XUE Xian. Mechanisms of Salt Tolerance and Growth Promotion in Plant Induced by Plant Growth-Promoting Rhizobacteria [J]. Biotechnology Bulletin, 2020, 36(9): 75-87. |
[14] | LI Pei-gen, YAO Ya-qian, SONG Ji-xiang, WANG Tian-qi, ZHOU Bo, WANG Bing, LIN Rong-shan. Isolation and Identification of IAA-producing Bacillus sp on Potato Rhizosphere and Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2020, 36(9): 109-116. |
[15] | LI Wen, WANG Tao. The Characteristics of Phosphate Solubilization of Rock Phosphate by Phosphate-solubilizing Bacterium JL-1 [J]. Biotechnology Bulletin, 2020, 36(8): 34-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||