Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (2): 38-47.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0787
Previous Articles Next Articles
JIN Li-wu1,3(), ZHANG Zhen-yu1,3, JIN Dong-wu2, MA Hua2, MA Yu-mei2, QIAO Zi-lin1,4,5, WANG Jia-min1,4,5()
Received:
2023-08-14
Online:
2024-02-26
Published:
2024-03-13
Contact:
WANG Jia-min
E-mail:jiuliian@163.com;287132290@xbmu.edu.cn
JIN Li-wu, ZHANG Zhen-yu, JIN Dong-wu, MA Hua, MA Yu-mei, QIAO Zi-lin, WANG Jia-min. The Application Progress of Serum-free Suspension Culture Technology of MDCK Cells in Influenza Vaccine Study and Production[J]. Biotechnology Bulletin, 2024, 40(2): 38-47.
年份 Year | 商品名 Product name | 细胞名称 Cell name | 国家 Country | 制造商 Manufacturer | 适用人群 Suitable for the croud | 参考文献Reference |
---|---|---|---|---|---|---|
2001 | Influvac® | MDCK | Netherlands | Solvay | Adult | [ |
2007 | Optaflu® | MDCK-33016PF | Switzerland | Novartis | Adult | [ |
2012 | Flumist® | MDCK | USA | GSK | Adult | [ |
2015 | SKY Cellflu® | MDCK-SKY3851 | Korea | SK Chemicals | Children and adults over 4 years old | [ |
2016 | Flucelvax Tetra® | MDCK | EU | CSL-Seqirus | Children and adults over 4 years old | [ |
2019 | Flucelvax Quadriskent® | MDCK | USA | CSL-Seqirus | Children and adults over 9 years old | [ |
Table1 Internationally approved MDCK cells matrix influenza vaccine
年份 Year | 商品名 Product name | 细胞名称 Cell name | 国家 Country | 制造商 Manufacturer | 适用人群 Suitable for the croud | 参考文献Reference |
---|---|---|---|---|---|---|
2001 | Influvac® | MDCK | Netherlands | Solvay | Adult | [ |
2007 | Optaflu® | MDCK-33016PF | Switzerland | Novartis | Adult | [ |
2012 | Flumist® | MDCK | USA | GSK | Adult | [ |
2015 | SKY Cellflu® | MDCK-SKY3851 | Korea | SK Chemicals | Children and adults over 4 years old | [ |
2016 | Flucelvax Tetra® | MDCK | EU | CSL-Seqirus | Children and adults over 4 years old | [ |
2019 | Flucelvax Quadriskent® | MDCK | USA | CSL-Seqirus | Children and adults over 9 years old | [ |
[1] | Influenza(Seasonal). WHO fact sheet on influenza: includes key facts, definition, symptoms, transmission, seasonal epidemics, effects, prevention, WHO response[EB/OL].(2018-03-31)(2023-07-07). https://www.who.int/zh/news-room/fact-sheets/detail/influenza-(seasonal). |
[2] | Grohskopf LA, Olsen SJ, Sokolow LZ, et al. Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices(ACIP)—United States, 2014-15 influenza season[J]. Morb Mortal Wkly Rep, 2014, 63(32): 691-697. |
[3] |
McLean KA, Goldin S, Nannei C, et al. The 2015 global production capacity of seasonal and pandemic influenza vaccine[J]. Vaccine, 2016, 34(45): 5410-5413.
doi: S0264-410X(16)30676-4 pmid: 27531411 |
[4] | Ping JH, Lopes TJS, Neumann G, et al. Development of high-yield influenza B virus vaccine viruses[J]. Proc Natl Acad Sci USA, 2016, 113(51): E8296-E8305. |
[5] |
Becker T, Elbahesh H, Reperant LA, et al. Influenza vaccines: successes and continuing challenges[J]. J Infect Dis, 2021, 224(12 Suppl 2): S405-S419.
doi: 10.1093/infdis/jiab269 URL |
[6] |
Skowronski DM, Janjua NZ, De Serres G, et al. Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses[J]. PLoS One, 2014, 9(3): e92153.
doi: 10.1371/journal.pone.0092153 URL |
[7] |
Govorkova EA, Murti G, Meignier B, et al. African green monkey kidney(Vero)cells provide an alternative host cell system for influenza A and B viruses[J]. J Virol, 1996, 70(8): 5519-5524.
pmid: 8764064 |
[8] |
Govorkova EA, Kaverin NV, Gubareva LV, et al. Replication of influenza A viruses in a green monkey kidney continuous cell line(Vero)[J]. J Infect Dis, 1995, 172(1): 250-253.
pmid: 7797924 |
[9] |
Pau MG, Ophorst C, Koldijk MH, et al. The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines[J]. Vaccine, 2001, 19(17-19): 2716-2721.
pmid: 11257414 |
[10] | Brown SW, Mehtali M. The avian EB66(R)cell line, application to vaccines, and therapeutic protein production[J]. PDA J Pharm Sci Technol, 2010, 64(5): 419-425. |
[11] | Rajaram S, Boikos C, Gelone DK, et al. Influenza vaccines: the potential benefits of cell-culture isolation and manufacturing[J]. Ther Adv Vaccines Immunother, 2020, 8: 2515135520908121. |
[12] |
Gregersen JP, Schmitt HJ, Trusheim H, et al. Safety of MDCK cell culture-based influenza vaccines[J]. Future Microbiol, 2011, 6(2): 143-152.
doi: 10.2217/fmb.10.161 URL |
[13] |
Hegde NR. Cell culture-based influenza vaccines: a necessary and indispensable investment for the future[J]. Hum Vaccin Immunother, 2015, 11(5): 1223-1234.
doi: 10.1080/21645515.2015.1016666 URL |
[14] |
Madin SH, Jr DARBY NB. Established kidney cell lines of normal adult bovine and ovine origin[J]. Proc Soc Exp Biol Med, 1958, 98(3): 574-576.
doi: 10.3181/00379727-98-24111 pmid: 13567776 |
[15] | Omeir RL, Teferedegne B, Foseh GS, et al. Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells[J]. Comp Med, 2011, 61(3): 243-250. |
[16] |
Leighton J, Brada Z, Estes LW, et al. Secretory activity and oncogenicity of a cell line(MDCK)derived from canine kidney[J]. Science, 1969, 163(3866): 472-473.
pmid: 5762397 |
[17] |
Gaush CR, Hard WL, Smith TF. Characterization of an established line of canine kidney cells(MDCK)[J]. Proc Soc Exp Biol Med, 1966, 122(3): 931-935.
doi: 10.3181/00379727-122-31293 pmid: 5918973 |
[18] |
Taub M, Jr Saier MH. An established but differentiated kidney epithelial cell line(MDCK)[J]. Methods Enzymol, 1979, 58: 552-560.
pmid: 218080 |
[19] |
Mochizuki M. Growth characteristics of canine pathogenic viruses in MDCK cells cultured in RPMI 1640 medium without animal protein[J]. Vaccine, 2006, 24(11): 1744-1748.
doi: 10.1016/j.vaccine.2005.07.114 pmid: 16271422 |
[20] |
Rodgers SE, Barton ES, Oberhaus SM, et al. Reovirus-induced apoptosis of MDCK cells is not linked to viral yield and is blocked by Bcl-2[J]. J Virol, 1997, 71(3): 2540-2546.
pmid: 9032397 |
[21] |
Mochizuki M, Hashimoto T. Growth of feline panleukopenia virus and canine parvovirus in vitro[J]. Nihon Juigaku Zasshi, 1986, 48(4): 841-844.
doi: 10.1292/jvms1939.48.841 URL |
[22] |
Green IJ. Serial propagation of influenza B(Lee)virus in a transmissible line of canine kidney cells[J]. Science, 1962, 138(3536): 42-43.
doi: 10.1126/science.138.3536.42 URL |
[23] |
Tree JA, Richardson C, Fooks AR, et al. Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains[J]. Vaccine, 2001, 19(25-26): 3444-3450.
pmid: 11348709 |
[24] | Cox N, Hannoun C, Hay A, et al. Cell culture as a substrate for the production of influenza vaccines: memorandum from a WHO meeting[J]. Bull World Health Organ, 1995, 73(4): 431-435. |
[25] |
Peschel B, Frentzel S, Laske T, et al. Comparison of influenza virus yields and apoptosis-induction in an adherent and a suspension MDCK cell line[J]. Vaccine, 2013, 31(48): 5693-5699.
doi: 10.1016/j.vaccine.2013.09.051 pmid: 24113260 |
[26] |
Huang D, Peng WJ, Ye Q, et al. Serum-free suspension culture of MDCK cells for production of influenza H1N1 vaccines[J]. PLoS One, 2015, 10(11): e0141686.
doi: 10.1371/journal.pone.0141686 URL |
[27] |
Perdue ML, Arnold F, Li S, et al. The future of cell culture-based influenza vaccine production[J]. Expert Rev Vaccines, 2011, 10(8): 1183-1194.
doi: 10.1586/erv.11.82 pmid: 21854311 |
[28] |
Chu CA, Lugovtsev V, Golding H, et al. Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production[J]. Proc Natl Acad Sci USA, 2009, 106(35): 14802-14807.
doi: 10.1073/pnas.0905912106 pmid: 19706449 |
[29] |
Kluge S, Benndorf D, Genzel Y, et al. Monitoring changes in proteome during stepwise adaptation of a MDCK cell line from adherence to growth in suspension[J]. Vaccine, 2015, 33(35): 4269-4280.
doi: 10.1016/j.vaccine.2015.02.077 pmid: 25891398 |
[30] |
Jaluria P, Betenbaugh M, Konstantopoulos K, et al. Application of microarrays to identify and characterize genes involved in attachment dependence in HeLa cells[J]. Metab Eng, 2007, 9(3): 241-251.
pmid: 17240181 |
[31] | 黄锭, 赵亮, 谭文松. 犬肾细胞MDCK无血清贴壁及单细胞悬浮培养[J]. 生物工程学报, 2011, 27(4): 645-652. |
Huang D, Zhao L, Tan WS. Adherent and single-cell suspension culture of Madin-Darby canine kidney cells in serum-free medium[J]. Chin J Biotechnol, 2011, 27(4): 645-652. | |
[32] |
Taub M, Chuman L, Saier Jr MH, et al. Growth of Madin-Darby canine kidney epithelial cell(MDCK)line in hormone-supplemented, serum-free medium[J]. Proc Natl Acad Sci USA, 1979, 76(7): 3338-3342.
pmid: 291007 |
[33] | 梅建国, 庄金秋, 沈志强. 动物细胞无血清培养技术研究进展[J]. 生物技术, 2010, 20(3): 87-89. |
Mei JG, Zhuang JQ, Shen ZQ. Advances in research on serum-free culture technology of animal cell[J]. Biotechnology, 2010, 20(3): 87-89. | |
[34] |
van der Valk J, Mellor D, Brands R, et al. The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture[J]. Toxicol In Vitro, 2004, 18(1): 1-12.
doi: 10.1016/j.tiv.2003.08.009 pmid: 14630056 |
[35] |
Merten OW, Kallel H, Manuguerra JC, et al. The new medium MDSS2N, free of any animal protein supports cell growth and production of various viruses[J]. Cytotechnology, 1999, 30(1-3): 191-201.
doi: 10.1023/A:1008021317639 pmid: 19003369 |
[36] |
Merten OW, Kierulff JV, Castignolles N, et al. Evaluation of the new serum-free medium(MDSS2)for the production of different biologicals: use of various cell lines[J]. Cytotechnology, 1994, 14(1): 47-59.
pmid: 7765112 |
[37] |
Kessler N, Thomas-Roche G, Gérentes L, et al. Suitability of MDCK cells grown in a serum-free medium for influenza virus production[J]. Dev Biol Stand, 1999, 98: 13-21; discussion 73-74.
pmid: 10494956 |
[38] |
Rockman S, Laurie KL, Parkes S, et al. New technologies for influenza vaccines[J]. Microorganisms, 2020, 8(11): 1745.
doi: 10.3390/microorganisms8111745 URL |
[39] |
Brands R, Visser J, Medema J, et al. Influvac: a safe Madin Darby Canine Kidney(MDCK)cell culture-based influenza vaccine[J]. Dev Biol Stand, 1999, 98: 93-100; discussion 111.
pmid: 10494962 |
[40] |
Mossad SB. Demystifying FluMist, a new intranasal, live influenza vaccine[J]. Cleve Clin J Med, 2003, 70(9): 801-806.
doi: 10.3949/ccjm.70.9.801 URL |
[41] |
Bühler S, Ramharter M. Flucelvax Tetra: a surface antigen, inactivated, influenza vaccine prepared in cell cultures[J]. ESMO Open, 2019, 4(1): e000481.
doi: 10.1136/esmoopen-2018-000481 URL |
[42] |
Lamb YN. Cell-based quadrivalent inactivated influenza virus vaccine(flucelvax® Tetra/flucelvax quadrivalent®): a review in the prevention of influenza[J]. Drugs, 2019, 79(12): 1337-1348.
doi: 10.1007/s40265-019-01176-z |
[43] | 黄锭. 用于流感疫苗生产的MDCK细胞无血清单细胞悬浮培养体系的开发[D]. 上海: 华东理工大学, 2010. |
Huang D. Development of serum-free single-cell suspension culture system of MDCK cells for the production of influenza vaccines[D]. Shanghai: East China University of Science and Technology, 2010. | |
[44] | 张良艳, 姚志东, 邢丽, 等. MDCK细胞的悬浮驯化及初步应用[J]. 生物技术通讯, 2013, 24(3): 382-384. |
Zhang LY, Yao ZD, Xing L, et al. Conversion of MDCK cell line to suspension culture and its appli cation for influenza virus production[J]. Lett Biotechnol, 2013, 24(3): 382-384. | |
[45] |
Bissinger T, Wu YX, Marichal-Gallardo P, et al. Towards integrated production of an influenza A vaccine candidate with MDCK suspension cells[J]. Biotechnol Bioeng, 2021, 118(10): 3996-4013.
doi: 10.1002/bit.27876 pmid: 34219217 |
[46] | 赵彩红, 王美皓, 李自良, 等. 无血清悬浮培养MDCK细胞系的建立及生物反应器高密度培养[J]. 中国生物制品学杂志, 2021, 34(11): 1362-1369. |
Zhao CH, Wang MH, Li ZL, et al. Establishment of MDCK suspension cell line in serum-free medium at high cell density in bioreactors[J]. Chin J Biol, 2021, 34(11): 1362-1369. | |
[47] | 李乐凯, 吴业红, 徐军, 等. 生物反应器高密度无血清培养全悬浮MDCK细胞和流感病毒工艺的建立[J]. 中国生物制品学杂志, 2022, 35(9): 1082-1089. |
Li LK, Wu YH, Xu J, et al. Development of a process for high-density serum-free culture of fully suspended MDCK cells and influenza virus in bioreactor[J]. Chin J Biol, 2022, 35(9): 1082-1089. | |
[48] | 国家药品监督管理局药品审评中心[EB/OL].(2023-01-13)(2023-08-05). https://www.cde.org.cn/main/xxgk/listpage/4b5255eb0a84820cef4ca3e8b6bbe20c. |
CDE Center for drug evaluation[EB/OL].(2023-01-13)(2023-08-05). https://www.cde.org.cn/main/xxgk/listpage/4b5255eb0a84820cef4ca3e8b6bbe20c. | |
[49] |
Xu W, Du SW, Li LT, et al. IFITM3 promotes NiV envelope protein-mediated entry into MDCK cells and interacts with the fusion subunit of the F protein[J]. Int J Biochem Cell Biol, 2022, 153: 106325.
doi: 10.1016/j.biocel.2022.106325 URL |
[50] |
Li X, Ahmad US, Huang YY, et al. Desmoglein-3 acts as a pro-survival protein by suppressing reactive oxygen species and doming whilst augmenting the tight junctions in MDCK cells[J]. Mech Ageing Dev, 2019, 184: 111174.
doi: 10.1016/j.mad.2019.111174 URL |
[51] |
Ganguly M, Yeolekar L, Tyagi P, et al. Evaluation of manufacturing feasibility and safety of an MDCK cell-based live attenuated influenza vaccine(LAIV)platform[J]. Vaccine, 2020, 38(52): 8379-8386.
doi: 10.1016/j.vaccine.2020.10.092 pmid: 33229107 |
[52] |
Ma GL, Qiao ZL, He D, et al. Establishment of a low-tumorigenic MDCK cell line and study of differential molecular networks[J]. Biologicals, 2020, 68: 112-121.
doi: 10.1016/j.biologicals.2020.07.003 URL |
[53] |
Doroshenko A, Halperin SA. Trivalent MDCK cell culture-derived influenza vaccine Optaflu(Novartis Vaccines)[J]. Expert Rev Vaccines, 2009, 8(6): 679-688.
doi: 10.1586/erv.09.31 pmid: 19485748 |
[54] |
Qiu ZY, Guo SQ, Liu G, et al. TGM2 inhibits the proliferation, migration and tumorigenesis of MDCK cells[J]. PLoS One, 2023, 18(4): e0285136.
doi: 10.1371/journal.pone.0285136 URL |
[55] |
Gopal SK, Greening DW, Zhu HJ, et al. Transformed MDCK cells secrete elevated MMP1 that generates LAMA5 fragments promoting endothelial cell angiogenesis[J]. Sci Rep, 2016, 6: 28321.
doi: 10.1038/srep28321 pmid: 27324842 |
[56] |
Watanabe H, Ishibashi K, et al. Mutant p53-expressing cells undergo necroptosis via cell competition with the neighboring normal epithelial cells[J]. Cell Rep, 2018, 23(13): 3721-3729.
doi: S2211-1247(18)30862-3 pmid: 29949757 |
[57] |
Castosa R, Martinez-Iglesias O, Roca-Lema D, et al. Hakai overexpression effectively induces tumour progression and metastasis in vivo[J]. Sci Rep, 2018, 8(1): 3466.
doi: 10.1038/s41598-018-21808-w pmid: 29472634 |
[58] |
Shukla P, Vogl C, Wallner B, et al. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells[J]. BMC Genomics, 2015, 16: 944.
doi: 10.1186/s12864-015-2036-9 pmid: 26572553 |
[59] |
Rasmussen RN, Christensen KV, Holm R, et al. Transcriptome analysis identifies activated signaling pathways and regulated ABC transporters and solute carriers after hyperosmotic stress in renal MDCK I cells[J]. Genomics, 2019, 111(6): 1557-1565.
doi: S0888-7543(18)30394-X pmid: 30389539 |
[60] |
Mayuramart O, Poomipak W, Rattanaburi S, et al. IRF7-deficient MDCK cell based on CRISPR/Cas9 technology for enhancing influenza virus replication and improving vaccine production[J]. PeerJ, 2022, 10: e13989.
doi: 10.7717/peerj.13989 URL |
[61] |
Onions D, Egan W, Jarrett R, et al. Validation of the safety of MDCK cells as a substrate for the production of a cell-derived influenza vaccine[J]. Biologicals, 2010, 38(5): 544-551.
doi: 10.1016/j.biologicals.2010.04.003 pmid: 20537553 |
[62] |
Zhang JY, Nian XX, Liu B, et al. Development of MDCK-based quadrivalent split seasonal influenza virus vaccine with high safety and immunoprotection: a preclinical study[J]. Antiviral Res, 2023, 216: 105639.
doi: 10.1016/j.antiviral.2023.105639 URL |
[63] |
Bart S, Cannon K, Herrington D, et al. Immunogenicity and safety of a cell culture-based quadrivalent influenza vaccine in adults: a Phase III, double-blind, multicenter, randomized, non-inferiority study[J]. Hum Vaccin Immunother, 2016, 12(9): 2278-2288.
doi: 10.1080/21645515.2016.1182270 URL |
[64] |
Yeolekar LR, Ganguly M, Tyagi P, et al. Immunogenicity and efficacy of the monovalent, trivalent and quadrivalent intranasal live attenuated influenza vaccines containing different pdmH1N1 strains[J]. Vaccine, 2018, 36(46): 6944-6952.
doi: S0264-410X(18)31354-9 pmid: 30322745 |
[65] |
Chia MY, Lin CY, Chen PL, et al. Characterization and immunogenicity of influenza H7N9 vaccine antigens produced using a serum-free suspension MDCK cell-based platform[J]. Viruses, 2022, 14(9): 1937.
doi: 10.3390/v14091937 URL |
[1] | YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China [J]. Biotechnology Bulletin, 2023, 39(1): 1-15. |
[2] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[3] | XU Chong-xin, ZHONG Jian-feng, GAO Mei-jing, LU Li-na, LIU Xian-jin, SHEN Yan. Research Progress in Plant Endophyte on the Quality Safety and Nutritional Quality Regulation of Edible Agricultural Products [J]. Biotechnology Bulletin, 2022, 38(5): 215-227. |
[4] | ZHANG Ya-han, ZHU Li-xia, HU Jing, ZHU Ya-jing, ZHANG Xue-jing, CAO Ye-zhong. Opportunities and Challenges of Glyphosate in the Application of Biotechnology Breeding in China [J]. Biotechnology Bulletin, 2022, 38(11): 1-9. |
[5] | ZHAO Yang, SUN Hui-ming, LIN Hao-peng, LUO Ping-ting, ZHU Ya-ting, CHEN Qiong-hua, SHU Hu. Biosafety and Nitrogen Removal Performance of a Safe and Efficient Aerobic Denitrifying Pseudomonas stutzeri DZ11 [J]. Biotechnology Bulletin, 2022, 38(10): 226-234. |
[6] | WANG Ting, YANG Yang, LI Jin-ping, DU Kun. Research Progress in the Effects of Genetically Modified Crops on Soil Microbial Community [J]. Biotechnology Bulletin, 2021, 37(9): 255-265. |
[7] | LIANG Xin, ZHANG Bao-shan, LIU Ji-rui, YU Si, CHEN Si-yu. Research Progress of the Effects of Glyphosate on Microorganisms [J]. Biotechnology Bulletin, 2021, 37(4): 211-223. |
[8] | HUANG Yao-hui, JIAO Yue, FU Zhong-wen. Overview and Progress of Japan Safety Management System of Genetically Modified Crops [J]. Biotechnology Bulletin, 2021, 37(3): 99-106. |
[9] | LI Rui, SUN Zu-li, YANG Xian-qing, LI Lai-hao, WEI Ya, CEN Jian-wei, WANG Jing, ZHAO Yong-qiang. Advances in the Applications of Metabolomics Technologies in Aquatic Products Quality and Safety Research [J]. Biotechnology Bulletin, 2020, 36(11): 155-163. |
[10] | LAN Qing-kuo, ZHAO Xin, SHEN Xiao-ling, WEI Jing-na, LIU Shuang, CHEN Rui, TAN Jian-xin, WANG Yong. Biosafety Assessment Technology Research for Genetically Modified Rice Based on Metabolomics [J]. Biotechnology Bulletin, 2020, 36(11): 222-229. |
[11] | WANG Qi, YAN Chun-lei, GAO Hong-wei, WU Wei, YANG Qing-li. Research Progress of DNA Aptasensors for Foodborne Pathogen Detection [J]. Biotechnology Bulletin, 2020, 36(11): 245-258. |
[12] | CHEN Min, LIU Xu-ping, ZHAO Liang. Development and Optimization of Serum-Free Medium for High-density Culture of Suspended BHK-21 Cells and High-yield of FMD Virus [J]. Biotechnology Bulletin, 2020, 36(10): 62-71. |
[13] | BAI Chun-li, YE Qian, JI A-mei, LIU Xu-ping, ZHANG Xu, LIU Zhi-liang, ZHU Ming-long, ZHAO Liang, TAN Wen-song. Stability of Suspended MDCK Cells for Avian Influenza Virus Production [J]. Biotechnology Bulletin, 2020, 36(10): 72-79. |
[14] | WU Yi-xiao, Thomas Bissinger, Yvonne Genzel, LIU Xu-ping, Udo Reichl, TAN Wen-Song. Perfusion Process Development of MDCK Suspension Cells for Influenza Virus Production [J]. Biotechnology Bulletin, 2020, 36(10): 247-255. |
[15] | WU Ya, XU Zhi-hui, ZHANG Biao, ZHAO Dong-fang, CAO Wen-xin, ZHANG Xing-ping. Research Progress of Nucleic Acid Aptamer Optical Biosensor in Kanamycin Detection [J]. Biotechnology Bulletin, 2020, 36(1): 193-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||