Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (4): 189-202.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1081
Previous Articles Next Articles
WANG Jia-wei(), LI Chen, LIU Jian-li(), ZHOU Shi-jie, YI Jia-min, YANG Jin-yuan, KANG Peng
Received:
2023-11-17
Online:
2024-04-26
Published:
2024-04-30
Contact:
LIU Jian-li
E-mail:wjw17901402@163.com;ljl7523@126.com
WANG Jia-wei, LI Chen, LIU Jian-li, ZHOU Shi-jie, YI Jia-min, YANG Jin-yuan, KANG Peng. Effects of Endophytic Fungal Inoculation on the Seedling Growth of Silage Maize[J]. Biotechnology Bulletin, 2024, 40(4): 189-202.
Fig. 1 Microscopic images of five endophytic fungi on the root infection of silage maize seedlings W: The inoculation method of mycelium tubule root. I: The inoculation method of mycelium fragment suspension root. CK is the control group. PI, Pm31, Tm36, Cs46 and Tm02 are the strain names. The same below
Fig. 4 Effects of five endophytic fungi on the aboveground parts of silage maize seedlings The significance level represented by different lowercase letters was P < 0.05, the same below
指标 Index | 株高Plant height | 基茎粗Basal stem thickness | 地上鲜重Aboveground fresh weight | 地上干重Above ground dry weight | 地上干物质含量Above-ground dry matter content | 平均叶面积 Mean leaf area | 叶相对含水量Leaf relative water content | 根鲜重 Fresh root weight | 根干重 Root dry weight | 根干物质含量Root dry matter content | 根长 Root length | 根表面积 Root surface area | 根体积 Root volume | 比根长 Specific root length | 全株鲜重 Fresh weight of whole plant | 全株干重 Dry weight of whole plant | 全株干物质含量 Dry matter content of whole plant | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
株高 Plant height | 1 | |||||||||||||||||
基茎粗Basal stem thickness | 0.803** | 1 | ||||||||||||||||
地上鲜重 Aboveground fresh weight | 0.879** | 0.867** | 1 | |||||||||||||||
地上干重 Above ground dry weight | 0.782** | 0.666* | 0.915** | 1 | ||||||||||||||
地上干物质含量 Above-ground dry matter content | 0.666* | 0.426 | 0.764* | 0.951** | 1 | |||||||||||||
平均叶面积 Mean leaf area | 0.727* | 0.616 | 0.807** | 0.812** | 0.703* | 1 | ||||||||||||
叶相对含水量 Leaf relative water content | -0.748* | -0.619 | -0.725* | -0.787** | -0.718* | -0.751* | 1 | |||||||||||
根鲜重 Fresh root weight | 0.801** | 0.735* | 0.873** | 0.914** | 0.813** | 0.908** | -0.854** | 1 | ||||||||||
根干重 Root dry weight | 0.539 | 0.367 | 0.583 | 0.436 | 0.348 | 0.53 | -0.095 | 0.331 | 1 | |||||||||
根干物质含量 Root dry matter content | -0.244 | -0.342 | -0.286 | -0.451 | -0.434 | -0.372 | 0.681* | -0.61 | 0.543 | 1 | ||||||||
根长 Root length | 0.707* | 0.414 | 0.659* | 0.659* | 0.631 | 0.815** | -0.447 | 0.646* | 0.766** | 0.063 | 1 | |||||||
根表面积 Root surface area | 0.790** | 0.579 | 0.823** | 0.822** | 0.756* | 0.930** | -0.642* | 0.840** | 0.685* | -0.178 | 0.938** | 1 | ||||||
根体积 Root volume | 0.827** | 0.754* | 0.926** | 0.906** | 0.779** | 0.938** | -0.831** | 0.962** | 0.511 | -0.429 | 0.711* | 0.898** | 1 | |||||
比根长 Specific root length | 0.482 | 0.307 | 0.32 | 0.465 | 0.51 | 0.495 | -0.579 | 0.587 | -0.172 | -0.666* | 0.475 | 0.515 | 0.435 | 1 | ||||
全株鲜重 Fresh weight of whole plant | 0.855** | 0.822** | 0.955** | 0.944** | 0.817** | 0.889** | -0.831** | 0.977** | 0.432 | -0.506 | 0.662* | 0.854** | 0.975** | 0.503 | 1 | |||
全株干重 Dry weight of whole plant | 0.806** | 0.644* | 0.925** | 0.925** | 0.853** | 0.823** | -0.622 | 0.814** | 0.745* | -0.102 | 0.807** | 0.896** | 0.886** | 0.265 | 0.881** | 1 | ||
全株干物质含量 Dry matter content of whole plant | 0.083 | -0.205 | 0.126 | 0.11 | 0.198 | 0.034 | 0.309 | -0.163 | 0.762* | 0.781** | 0.46 | 0.29 | 0.009 | -0.37 | -0.061 | 0.41 | 1 | |
根冠比 Root-shoot ratio | -0.668* | -0.595 | -0.750* | -0.837** | -0.806** | -0.54 | 0.821** | -0.767** | -0.001 | 0.675* | -0.249 | -0.483 | -0.706* | -0.461 | -0.791** | -0.628 | 0.214 | 1 |
Table 1 Correlation analysis of trait indexes of silage maize seedling inoculated with endoplytic fungi
指标 Index | 株高Plant height | 基茎粗Basal stem thickness | 地上鲜重Aboveground fresh weight | 地上干重Above ground dry weight | 地上干物质含量Above-ground dry matter content | 平均叶面积 Mean leaf area | 叶相对含水量Leaf relative water content | 根鲜重 Fresh root weight | 根干重 Root dry weight | 根干物质含量Root dry matter content | 根长 Root length | 根表面积 Root surface area | 根体积 Root volume | 比根长 Specific root length | 全株鲜重 Fresh weight of whole plant | 全株干重 Dry weight of whole plant | 全株干物质含量 Dry matter content of whole plant | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
株高 Plant height | 1 | |||||||||||||||||
基茎粗Basal stem thickness | 0.803** | 1 | ||||||||||||||||
地上鲜重 Aboveground fresh weight | 0.879** | 0.867** | 1 | |||||||||||||||
地上干重 Above ground dry weight | 0.782** | 0.666* | 0.915** | 1 | ||||||||||||||
地上干物质含量 Above-ground dry matter content | 0.666* | 0.426 | 0.764* | 0.951** | 1 | |||||||||||||
平均叶面积 Mean leaf area | 0.727* | 0.616 | 0.807** | 0.812** | 0.703* | 1 | ||||||||||||
叶相对含水量 Leaf relative water content | -0.748* | -0.619 | -0.725* | -0.787** | -0.718* | -0.751* | 1 | |||||||||||
根鲜重 Fresh root weight | 0.801** | 0.735* | 0.873** | 0.914** | 0.813** | 0.908** | -0.854** | 1 | ||||||||||
根干重 Root dry weight | 0.539 | 0.367 | 0.583 | 0.436 | 0.348 | 0.53 | -0.095 | 0.331 | 1 | |||||||||
根干物质含量 Root dry matter content | -0.244 | -0.342 | -0.286 | -0.451 | -0.434 | -0.372 | 0.681* | -0.61 | 0.543 | 1 | ||||||||
根长 Root length | 0.707* | 0.414 | 0.659* | 0.659* | 0.631 | 0.815** | -0.447 | 0.646* | 0.766** | 0.063 | 1 | |||||||
根表面积 Root surface area | 0.790** | 0.579 | 0.823** | 0.822** | 0.756* | 0.930** | -0.642* | 0.840** | 0.685* | -0.178 | 0.938** | 1 | ||||||
根体积 Root volume | 0.827** | 0.754* | 0.926** | 0.906** | 0.779** | 0.938** | -0.831** | 0.962** | 0.511 | -0.429 | 0.711* | 0.898** | 1 | |||||
比根长 Specific root length | 0.482 | 0.307 | 0.32 | 0.465 | 0.51 | 0.495 | -0.579 | 0.587 | -0.172 | -0.666* | 0.475 | 0.515 | 0.435 | 1 | ||||
全株鲜重 Fresh weight of whole plant | 0.855** | 0.822** | 0.955** | 0.944** | 0.817** | 0.889** | -0.831** | 0.977** | 0.432 | -0.506 | 0.662* | 0.854** | 0.975** | 0.503 | 1 | |||
全株干重 Dry weight of whole plant | 0.806** | 0.644* | 0.925** | 0.925** | 0.853** | 0.823** | -0.622 | 0.814** | 0.745* | -0.102 | 0.807** | 0.896** | 0.886** | 0.265 | 0.881** | 1 | ||
全株干物质含量 Dry matter content of whole plant | 0.083 | -0.205 | 0.126 | 0.11 | 0.198 | 0.034 | 0.309 | -0.163 | 0.762* | 0.781** | 0.46 | 0.29 | 0.009 | -0.37 | -0.061 | 0.41 | 1 | |
根冠比 Root-shoot ratio | -0.668* | -0.595 | -0.750* | -0.837** | -0.806** | -0.54 | 0.821** | -0.767** | -0.001 | 0.675* | -0.249 | -0.483 | -0.706* | -0.461 | -0.791** | -0.628 | 0.214 | 1 |
指标Index | 主成分载荷Principal component load | ||
---|---|---|---|
F1 | F2 | F3 | |
株高 Plant height | 0.257 | 0.043 | -0.115 |
基茎粗 Basal stem thickness | 0.220 | -0.055 | -0.448 |
地上鲜重 Above-ground fresh weight | 0.274 | 0.059 | -0.277 |
地上干重 Above-ground dry weight | 0.278 | -0.008 | -0.043 |
地上干物质含量 Above-ground dry matter content | 0.250 | -0.008 | 0.145 |
平均叶面积 Mean leaf area | 0.264 | 0.037 | 0.171 |
叶相对含水量 Leaf relative water content | -0.243 | 0.210 | 0.013 |
根鲜重 Fresh root weight | 0.279 | -0.104 | 0.021 |
根干重 Root dry weight | 0.145 | 0.462 | -0.080 |
根干物质含量 Root dry matter content | -0.127 | 0.477 | -0.096 |
根长 Root length | 0.220 | 0.255 | 0.399 |
根表面积 Root surface area | 0.264 | 0.152 | 0.249 |
根体积 Root volume | 0.282 | 0.003 | -0.062 |
比根长 Specific root length | 0.157 | -0.253 | 0.587 |
全株鲜重 Fresh weight of whole plant | 0.286 | -0.047 | -0.108 |
全株干重 Dry weight of whole plant | 0.267 | 0.190 | -0.072 |
全株干物质含量 Dry matter content of whole plant | 0.015 | 0.505 | 0.084 |
根冠比 Root-shoot ratio | -0.224 | 0.221 | 0.215 |
主成分特征值 Eigenvalue of principal component | 11.856 | 3.399 | 1.045 |
成分贡献率 Component contribution rate/% | 65.866 | 18.884 | 5.807 |
累计贡献率 Cumulative contribution rate/% | 65.866 | 84.750 | 90.557 |
Table 2 Principal component eigenvalue, variance contribution rate, cumulative contribution rate and component load matrix of each index growth rate
指标Index | 主成分载荷Principal component load | ||
---|---|---|---|
F1 | F2 | F3 | |
株高 Plant height | 0.257 | 0.043 | -0.115 |
基茎粗 Basal stem thickness | 0.220 | -0.055 | -0.448 |
地上鲜重 Above-ground fresh weight | 0.274 | 0.059 | -0.277 |
地上干重 Above-ground dry weight | 0.278 | -0.008 | -0.043 |
地上干物质含量 Above-ground dry matter content | 0.250 | -0.008 | 0.145 |
平均叶面积 Mean leaf area | 0.264 | 0.037 | 0.171 |
叶相对含水量 Leaf relative water content | -0.243 | 0.210 | 0.013 |
根鲜重 Fresh root weight | 0.279 | -0.104 | 0.021 |
根干重 Root dry weight | 0.145 | 0.462 | -0.080 |
根干物质含量 Root dry matter content | -0.127 | 0.477 | -0.096 |
根长 Root length | 0.220 | 0.255 | 0.399 |
根表面积 Root surface area | 0.264 | 0.152 | 0.249 |
根体积 Root volume | 0.282 | 0.003 | -0.062 |
比根长 Specific root length | 0.157 | -0.253 | 0.587 |
全株鲜重 Fresh weight of whole plant | 0.286 | -0.047 | -0.108 |
全株干重 Dry weight of whole plant | 0.267 | 0.190 | -0.072 |
全株干物质含量 Dry matter content of whole plant | 0.015 | 0.505 | 0.084 |
根冠比 Root-shoot ratio | -0.224 | 0.221 | 0.215 |
主成分特征值 Eigenvalue of principal component | 11.856 | 3.399 | 1.045 |
成分贡献率 Component contribution rate/% | 65.866 | 18.884 | 5.807 |
累计贡献率 Cumulative contribution rate/% | 65.866 | 84.750 | 90.557 |
处理 Treatment | F1主成分得分 F1 principal component score | F2主成分得分 F2 principal component score | F3主成分得分 F3 principal component score | 主成分综合得分 Principal component comprehensive score | 排名 Rank |
---|---|---|---|---|---|
I-PI | 4.172 | -0.090 | -0.323 | 2.576 | 1 |
I-Pm31 | 4.071 | -0.350 | 0.381 | 2.504 | 2 |
I-Tm36 | 3.045 | -0.018 | 0.965 | 1.959 | 3 |
I-Tm02 | 2.332 | -0.789 | -1.362 | 1.231 | 4 |
I-Cs46 | 1.346 | -1.978 | 0.312 | 0.487 | 5 |
W-Pm31 | -0.821 | 3.144 | 0.542 | 0.111 | 6 |
W-Cs46 | -1.705 | 2.893 | -1.573 | -0.612 | 7 |
W-Tm02 | -3.495 | 0.120 | 1.646 | -2.069 | 8 |
W-PI | -4.030 | -0.170 | 0.260 | -2.540 | 9 |
W-Tm36 | -4.916 | -2.762 | -0.848 | -3.647 | 10 |
Table 3 Principal component scores, comprehensive scores and rankings of the effects of five endophytic fungi on silage maize seedlings inoculated in two ways
处理 Treatment | F1主成分得分 F1 principal component score | F2主成分得分 F2 principal component score | F3主成分得分 F3 principal component score | 主成分综合得分 Principal component comprehensive score | 排名 Rank |
---|---|---|---|---|---|
I-PI | 4.172 | -0.090 | -0.323 | 2.576 | 1 |
I-Pm31 | 4.071 | -0.350 | 0.381 | 2.504 | 2 |
I-Tm36 | 3.045 | -0.018 | 0.965 | 1.959 | 3 |
I-Tm02 | 2.332 | -0.789 | -1.362 | 1.231 | 4 |
I-Cs46 | 1.346 | -1.978 | 0.312 | 0.487 | 5 |
W-Pm31 | -0.821 | 3.144 | 0.542 | 0.111 | 6 |
W-Cs46 | -1.705 | 2.893 | -1.573 | -0.612 | 7 |
W-Tm02 | -3.495 | 0.120 | 1.646 | -2.069 | 8 |
W-PI | -4.030 | -0.170 | 0.260 | -2.540 | 9 |
W-Tm36 | -4.916 | -2.762 | -0.848 | -3.647 | 10 |
菌株 Strain | 主成分综合得分差值 Principal component composite score difference |
---|---|
Tm36 | 5.606 |
PI | 5.116 |
Tm02 | 3.300 |
Pm31 | 2.615 |
Cs46 | 1.099 |
Table 4 Difference of principal component comprehensive scores of five endophytic fungi inoculated silage maize seedlings in two ways
菌株 Strain | 主成分综合得分差值 Principal component composite score difference |
---|---|
Tm36 | 5.606 |
PI | 5.116 |
Tm02 | 3.300 |
Pm31 | 2.615 |
Cs46 | 1.099 |
[1] | 荆元芳, 吴连杰, 马传洋, 等. 不同浓度和形态磷处理下内生真菌感染对高羊茅的影响[J]. 生态学报, 2014, 34(13): 3576-3583. |
Jing YF, Wu LJ, Ma CY, et al. Effects of endophyte infection on tall fescue in different phosphorus levels and forms[J]. Acta Ecol Sin, 2014, 34(13): 3576-3583. | |
[2] | 王志伟, 纪燕玲, 陈永敢. 植物内生菌研究及其科学意义[J]. 微生物学通报, 2015, 42(2): 349-363. |
Wang ZW, Ji YL, Chen YG. Studies and biological significances of plant endophytes[J]. Microbiol China, 2015, 42(2): 349-363. | |
[3] |
Dubey A, Malla MA, Kumar A, et al. Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture[J]. Crit Rev Biotechnol, 2020, 40(8): 1210-1231.
doi: 10.1080/07388551.2020.1808584 URL |
[4] | 彭靓, 陈梦, 廖小锋, 等. 米槁根部内生促生真菌筛选及其促生特性研究[J]. 西北农林科技大学学报: 自然科学版, 2023, 51(9): 84-91. |
Peng L, Chen M, Liao XF, et al. Screening and characteristics of endophytic growth-promoting fungi in roots of Cinnamomum migao[J]. J Northwest A F Univ Nat Sci Ed, 2023, 51(9): 84-91. | |
[5] |
张昊, 刘苗苗, 刘晓娜, 等. 内生菌影响药用植物产生药理活性化合物的研究进展[J]. 生物技术通报, 2022, 38(8): 41-51.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1487 |
Zhang H, Liu MM, Liu XN, et al. Impact of endophytic microorganisms on the pharmaco-active compounds production in medicinal plants: a review[J]. Biotechnol Bull, 2022, 38(8): 41-51. | |
[6] |
李春杰, 姚祥, 南志标. 醉马草内生真菌共生体研究进展[J]. 植物生态学报, 2018, 42(8): 793-805.
doi: 10.17521/cjpe.2018.0001 |
Li CJ, Yao X, Nan ZB. Advances in research of Achnatherum inebrians-Epichlo endophyte symbionts[J]. Chin J Plant Ecol, 2018, 42(8): 793-805.
doi: 10.17521/cjpe.2018.0001 URL |
|
[7] |
Dolatabad HK, Javan-Nikkhah M, Shier WT. Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia vera[J]. Mycol Prog, 2017, 16(8): 777-790.
doi: 10.1007/s11557-017-1315-z URL |
[8] |
Adeleke BS, Babalola OO, Glick BR. Plant growth-promoting root-colonizing bacterial endophytes[J]. Rhizosphere, 2021, 20: 100433.
doi: 10.1016/j.rhisph.2021.100433 URL |
[9] |
李秀璋, 姚祥, 李春杰, 等. 禾草内生真菌作为生防因子的潜力分析[J]. 植物生态学报, 2015, 39(6): 621-634.
doi: 10.17521/cjpe.2015.0060 |
Li XZ, Yao X, Li CJ, et al. Potential analysis of grass endophytes Neotyphodium as biocontrol agents[J]. Chin J Plant Ecol, 2015, 39(6): 621-634.
doi: 10.17521/cjpe.2015.0060 URL |
|
[10] |
石新建, 张靖歆, 秦天姿, 等. 内生真菌感染对宿主羽茅及邻生植物抗病性的影响[J]. 植物生态学报, 2021, 45(8): 860-869.
doi: 10.17521/cjpe.2021.0132 |
Shi XJ, Zhang JX, Qin TZ, et al. Effects of endophyte infection on fungal disease resistance of Achnatherum sibiricum and non-symbiotic neighbours[J]. Chin J Plant Ecol, 2021, 45(8): 860-869.
doi: 10.17521/cjpe.2021.0132 URL |
|
[11] |
隋丽, 万婷玉, 路杨, 等. 内生真菌对植物促生、抗逆作用研究进展[J]. 中国生物防治学报, 2021, 37(6): 1325-1331.
doi: 10.16409/j.cnki.2095-039x.2021.06.024 |
Sui L, Wan TY, Lu Y, et al. Review of fungal endophytes on plant growth promotion and stress resistance[J]. Chin J Biol Contr, 2021, 37(6): 1325-1331. | |
[12] | Santos M, Cesanelli I, Diánez F, et al. Advances in the role of dark septate endophytes in the plant resistance to abiotic and biotic stresses[J]. J Fungi, 2021, 7(11): 939. |
[13] | 杜衎, 高德民, 孙燕, 等. 北柴胡内生真菌分离鉴定及其生防促生活性分析[J]. 山东农业科学, 2023, 55(6): 85-94. |
Du K, Gao DM, Sun Y, et al. Isolation and identification of endophytic fungi from Bupleurum chinensis DC. and analysis of their biocontrol and growth-promoting activity[J]. Shandong Agric Sci, 2023, 55(6): 85-94. | |
[14] | 毕银丽, 宋雅宁, 白雪蕊, 等. DSE及其代谢物对紫花苜蓿促生作用及其矿区生态修复潜力[J]. 煤炭科学技术, 2023, 51(12):90-99. |
Bi YL, Song YN, Bai XR, et al. DSE and its metabolites on Medicago sativa growth promotion and its potential for ecological restoration in mining areas[J]. Coal Sci Technol, 2023, 51(12):90-99. | |
[15] | 崔雨虹, 白云, 曹娜, 等. 球孢白僵菌不同施用方式对玉米促生作用的研究[J]. 热带作物学报, 2017, 38(2): 206-212. |
Cui YH, Bai Y, Cao N, et al. Effects of Beauveria bassiana inoculated with different methods on maize as growth promoter[J]. Chin J Trop Crops, 2017, 38(2): 206-212. | |
[16] | 钱寅森, 武启迪, 季中亚, 等. 我国青贮玉米生产与加工研究进展[J]. 江苏农业科学, 2021, 49(23): 41-46. |
Qian YS, Wu QD, Ji ZY, et al. Research progress of silage corn production and processing[J]. Jiangsu Agric Sci, 2021, 49(23): 41-46. | |
[17] | 王斐, 王克雄, 关耀兵, 等. 宁夏南部山区不同生态类型条件下青贮玉米产量和品质的差异研究[J]. 饲料研究, 2022, 45(20): 79-82. |
Wang F, Wang KX, Guan YB, et al. Study on yield and quality difference of silage maize under different ecological types in southern mountainous area of Ningxia[J]. Feed Res, 2022, 45(20): 79-82. | |
[18] | 曹立娟, 张顺香, 姚亚妮, 等. 14个青贮玉米品种在宁夏雨养区的生产性能和营养价值综合评价[J]. 草业科学, 2022, 39(5): 977-987. |
Cao LJ, Zhang SX, Yao YN, et al. Comprehensive evaluation of the production performance and nutritional value of 14 silage maize varieties in rainfed areas of Ningxia[J]. Pratacultural Sci, 2022, 39(5): 977-987. | |
[19] |
侯湃, 陈彩锦, 张静妮, 等. 宁夏固原地区不同青贮玉米品种生产性能及营养品质研究[J]. 草地学报, 2021, 29(10): 2346-2354.
doi: 10.11733/j.issn.1007-0435.2021.10.027 |
Hou P, Chen CJ, Zhang JN, et al. Study on production performance and nutritional quality of different silage maize in Guyuan area of Ningxia[J]. Acta Agrestia Sin, 2021, 29(10): 2346-2354. | |
[20] | 王英娜, 王佳玮, 夏依婷, 等. 内生真菌对青贮玉米幼苗抗旱性的影响[J]. 干旱地区农业研究, 2022, 40(6): 45-55, 71. |
Wang YN, Wang JW, Xia YT, et al. Effects of endophytic fungi on drought stresstolerance of silage maize seedlings[J]. Agric Res Arid Areas, 2022, 40(6): 45-55, 71. | |
[21] | 南志标, 李春杰. 禾草-内生真菌共生体在草地农业系统中的作用[J]. 生态学报, 2004, 24(3): 605-616. |
Nan ZB, Li CJ. Roles of the grass-Neotyphodium association in pastoral agriculture systems[J]. Acta Ecol Sin, 2004, 24(3): 605-616. | |
[22] | 崔振, 李彦忠. 豆科植物疯草中内生真菌及其作用[J]. 草业科学, 2014, 31(9): 1686-1695. |
Cui Z, Li YZ. An overview of study on legume plant locoweed endophyte[J]. Pratacultural Sci, 2014, 31(9): 1686-1695. | |
[23] |
李春杰, 郎鸣晓, 陈振江, 等. 禾草-内生真菌人工接种技术研究进展[J]. 草业学报, 2021, 30(7): 179-189.
doi: 10.11686/cyxb2020267 |
Li CJ, Lang MX, Chen ZJ, et al. Advances in artificial inoculation technology for grass-endophytic fungi[J]. Acta Prataculturae Sin, 2021, 30(7): 179-189. | |
[24] | 李春杰, 王正凤, 陈泰祥, 等. 利用禾草内生真菌创制大麦新种质[J]. 科学通报, 2021, 66(20): 2608-2617. |
Li CJ, Wang ZF, Chen TX, et al. Creation of novel barley germplasm using an Epichloë endophyte[J]. Chin Sci Bull, 2021, 66(20): 2608-2617.
doi: 10.1360/TB-2020-1587 URL |
|
[25] | 张晓蓉, 李涛, 王超君, 等. 深色有隔内生真菌甘瓶霉对番茄抗枯萎病的作用[J]. 中国生物防治学报, 2017, 33(3): 394-400. |
Zhang XR, Li T, Wang CJ, et al. Enhanced tolerance of tomatoes against Fusarium oxysporum by inoculation with dark septate endophyte[J]. Chin J Biol Contr, 2017, 33(3): 394-400. | |
[26] | 刘燕霞, 龙俊萌, 王静茹, 等. 五种漠境深色有隔内生真菌对小麦促生抗旱效应研究[J]. 中国科学: 生命科学, 2021, 51(9): 1339-1349. |
Liu YX, Long JM, Wang JR, et al. Effects of five dark septate endophytes isolated from deserts on growing wheat under drought stress[J]. Sci Sin Vitae, 2021, 51(9): 1339-1349.
doi: 10.1360/SSV-2021-0313 URL |
|
[27] | 蓝桃菊, 陈艳露, 黄诚梅, 等. 大石围天坑群深色有隔内生真菌(DSE)群落组成及其对先锋植物抗旱能力的影响[J]. 微生物学杂志, 2017, 37(2): 26-34. |
Lan TJ, Chen YL, Huang CM, et al. Community constituent of dark septate endophytic fungi in Dashiwei doline group and their effects on pioneer plants’ drought resistance capability[J]. J Microbiol, 2017, 37(2): 26-34. | |
[28] | 刘范, 王斌, 伍俊为, 等. 印度梨形孢和FocTR4对香蕉根系微生物群落结构的影响[J]. 福建农林大学学报: 自然科学版, 2022, 51(1): 53-61. |
Liu F, Wang B, Wu JW, et al. Effects of Serendipita indica and FocTR4 on the microorganism community structure in banana roots[J]. J Fujian Agric For Univ Nat Sci Ed, 2022, 51(1): 53-61. | |
[29] |
吴楚, 税蓉, 韦巧, 等. 根内生真菌印度梨形孢侵染对黑麦草气体交换和生长发育的影响[J]. 草地学报, 2018, 26(3): 786-790.
doi: 10.11733/j.issn.1007-0435.2018.03.035 |
Wu C, Shui R, Wei Q, et al. Effects of colonization of endophytic fungus Piriformospora indica on gas exchange and growth and development of Lolium perenne[J]. Acta Agrestia Sin, 2018, 26(3): 786-790. | |
[30] | 王铭蕊. 云南个旧黄茅山尾矿区两种复垦植物根内DSE菌株功能多样性研究[D]. 昆明: 云南大学, 2019. |
Wang MR. Multi-functions of dark septate endophytes(DSE)colonizing the roots of two key reclaimed plants in Huangmaoshan tailing ponds, Gejiu, southwest China[D]. Kunming: Yunnan University, 2019. | |
[31] | 张波, 王宏伟, 肖逸, 等. 浸种及接种内生真菌对茅苍术种子发芽与幼苗生长的影响[J]. 江苏农业科学, 2012, 40(9): 227-230. |
Zhang B, Wang HW, Xiao Y, et al. Effects of soaking seeds and inoculating endophytic fungi on seed germination and seedling growth of Atractylodes lancea[J]. Jiangsu Agric Sci, 2012, 40(9): 227-230. | |
[32] | 毕银丽, 王茁优, 柯增鸣. 叶面涂抹DSE菌液对蛋白桑生长发育影响及其生态修复前景[J]. 煤田地质与勘探, 2023, 51(2): 187-194. |
Bi YL, Wang ZY, Ke ZM. Effect of foliar application of DSE fungal solution on growth of Morus alba and its prospects of ecological restoration application[J]. Coal Geol Explor, 2023, 51(2): 187-194. | |
[33] |
陈保冬, 于萌, 郝志鹏, 等. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报, 2019, 30(3): 1035-1046.
doi: 10.13287/j.1001-9332.201903.037 |
Chen BD, Yu M, Hao ZP, et al. Research progress in arbuscular mycorrhizal technology[J]. Chin J Appl Ecol, 2019, 30(3): 1035-1046.
doi: 10.13287/j.1001-9332.201903.037 |
|
[34] |
Krak K, Janoušková M, Caklová P, et al. Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of mitochondrial DNA[J]. Appl Environ Microbiol, 2012, 78(10): 3630-3637.
doi: 10.1128/AEM.00035-12 URL |
[35] | 史顺增, 熊德成, 冯建新, 等. 模拟氮沉降对杉木幼苗细根的生理生态影响[J]. 生态学报, 2017, 37(1): 74-83. |
Shi SZ, Xiong DC, Feng JX, et al. Ecophysiological effects of simulated nitrogen deposition on fine roots of Chinese fir(Cunninghamia lanceolata)seedlings[J]. Acta Ecol Sin, 2017, 37(1): 74-83. | |
[36] | 袁野梅, 柳隽瑶, 高秀丽, 等. 温带草原7种针茅植物根系特征及其对环境因子变化的适应[J]. 生态学报, 2022, 42(21): 8784-8794. |
Yuan YM, Liu JY, Gao XL, et al. Root traits of seven Stipa species and their relations with environmental factors in temperate grasslands[J]. Acta Ecol Sin, 2022, 42(21): 8784-8794. | |
[37] |
刘斌, 魏慧, 寇燕燕, 等. 灌溉制度对甜瓜/向日葵间作系统叶片水分状况和水分利用效率的影响[J]. 中国农学通报, 2022, 38(2): 19-25.
doi: 10.11924/j.issn.1000-6850.casb2021-0413 |
Liu B, Wei H, Kou YY, et al. Effects of irrigation system on leaf water status and water use efficiency of melon/sunflower intercropping system[J]. Chin Agric Sci Bull, 2022, 38(2): 19-25.
doi: 10.11924/j.issn.1000-6850.casb2021-0413 |
|
[38] | 马敏芝, 南志标. 内生真菌对感染锈病黑麦草生长和生理的影响[J]. 草业学报, 2011, 20(6): 150-156. |
Ma MZ, Nan ZB. Effect of fungal endophytes against rust disease of perennial ryegrass(Lolium perenne)on growth and physiological indices[J]. Acta Prataculturae Sin, 2011, 20(6): 150-156. | |
[39] |
武明雅, 陈俊强, 马海林, 等. 印度梨形孢定殖策略和促生机制研究进展[J]. 中国农学通报, 2023, 39(3): 119-126.
doi: 10.11924/j.issn.1000-6850.casb2022-0243 |
Wu MY, Chen JQ, Ma HL, et al. Colonization strategy and growth promotion mechanism of Serendipita indica: research progress[J]. Chin Agric Sci Bull, 2023, 39(3): 119-126. | |
[40] | 安常蓉, 李芸, 刘昌闳, 等. 接种内生真菌对蓝莓幼苗生长生理效应的影响[J]. 中国果树, 2022(7): 16-22. |
An CR, Li Y, Liu CH, et al. Effects of inoculating endophytic fungi on the growth and physiological indexes of blueberry seedlings[J]. China Fruits, 2022(7): 16-22. |
[1] | ZHAO Guang-xu, YANG He-tong, SHAO Xiao-bo, CUI Zhi-hao, LIU Hong-guang, ZHANG Jie. Phosphate-solubilizing Properties and Optimization of Cultivation Conditions of Penicillium rubens: A Highly Efficient Phosphate Solubilizer [J]. Biotechnology Bulletin, 2023, 39(9): 71-83. |
[2] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[3] | XU Hong-Yun, LV Jun, YU Cun. Growth Promoting of Pinus massoniana Seedlings Regulated by Rhizosphere Phosphate-solubilizing Paraburkholderia spp. [J]. Biotechnology Bulletin, 2023, 39(6): 274-285. |
[4] | LI Yue, YU Wan-xian, LI Ning, YAO Ming-hua, LI Feng, DENG Ying-tian. Inoculation Method for Colletotrichum in Pepper(Capsicum annuum)Seedlings [J]. Biotechnology Bulletin, 2023, 39(4): 221-226. |
[5] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[6] | YANG Dong-ya, QI Rui-xue LI, Zhao-xuan , LIN Wei, MA Hui, ZHANG Xue-yan. Screening, Identification and Growth-promoting Effect of Antagonistic Bacillus spp. Against Cucumber Fusarium solani [J]. Biotechnology Bulletin, 2023, 39(2): 211-220. |
[7] | ZOU Lan, WANG Qian, LI Mu-yi, YE Kun-hao, HUANG Jing. Identification, Biocontrol and Plant Growth-promoting Potential of Endophytic Bacterial Strain JY-3-1R from Aconitum carmichaelii Debx. [J]. Biotechnology Bulletin, 2023, 39(10): 246-255. |
[8] | SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata [J]. Biotechnology Bulletin, 2023, 39(1): 264-273. |
[9] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[10] | ZHANG Shu-hua, FANG Qian, JIA Hong-mei, HAN Gui-qi, YAN Zhu-yun, HE Dong-mei. Difference Analysis of Fungal Community Among Bulk Soil,Rhizosphere and Rhizomes of Ligusticum chuanxiong Hort. [J]. Biotechnology Bulletin, 2021, 37(4): 56-69. |
[11] | LI E, HUANG Yong, MENG Yuan-yuan, LI Xuan, DU Guang-hui, LIU Fei-hu. Isolation and Identification of the Endophytic Fungi of‘Bama hemp’ Under Salt Stress and Its Diversity Analysis [J]. Biotechnology Bulletin, 2021, 37(10): 26-33. |
[12] | HU Yu-jie, ZHU Xiu-ling, DING Yan-qin, DU Bing-hai, WANG Cheng-qiang. Research Progress on Salt Tolerance and Growth-promoting Mechanism of Bacillus [J]. Biotechnology Bulletin, 2020, 36(9): 64-74. |
[13] | PAN Jing, HUANG Cui-hua, PENG Fei, YOU Quan-gang, LIU Fei-yao, XUE Xian. Mechanisms of Salt Tolerance and Growth Promotion in Plant Induced by Plant Growth-Promoting Rhizobacteria [J]. Biotechnology Bulletin, 2020, 36(9): 75-87. |
[14] | LI Pei-gen, YAO Ya-qian, SONG Ji-xiang, WANG Tian-qi, ZHOU Bo, WANG Bing, LIN Rong-shan. Isolation and Identification of IAA-producing Bacillus sp on Potato Rhizosphere and Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2020, 36(9): 109-116. |
[15] | PAN Feng, HOU Kai, LIU Yun, WU Wei. Review for Research on Polysaccharides Produced by Endophytic Fungi Derived from Plants [J]. Biotechnology Bulletin, 2020, 36(7): 158-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||